
DEOS Project White Paper © 2010 Japan Science and Technology Agency

DEOS-FY2010-WP-02E

JST-CREST

Dependable Operating Systems for Embedded Systems
Aiming at Practical Applications

－ DEOS Project －

 DEOS: Dependable Embedded Operating System

White Paper

Version 2.0a

2010/12/01

DEOS Project Research Supervisor
Mario Tokoro

(Sony Computer Science Laboratories, Inc.)

Japan Science and Technology Agency

© 2010 Japan Science and Technology Agency White Paper DEOS Project

Preface to Version 2.0a

 It has been one year since we published the DEOS Project White Paper Version 1.0 on September
1, 2009. The project is progressing in accordance with the plan described in the White Paper
Version 1.0, and implementation of the technology as well as software development have started.
We are pleased to publish this second version of the DEOS Project White Paper to present our recent
progress.

Changes to chapters of Version 2.0a from Version 1.0:

Version 1.0 Version 2.0 Major
difference

Chapter 1 Background Chapter 1 Background Part
added

Chapter 2 Dependability Chapter 2 Dependability Little
change

 Chapter 3 Phases of DEOS Processes New
Chapter 3 Project Direction Chapter 4 Project Direction Renewed
Chapter 4 Items for Research &

Development
 Merged

into
Chapter 4

 Chapter 5 Major Research and Development
Status

New

Chapter 5 Research and
Development
Organization

Chapter 6 Research and Development
Organization

Part
added

Chapter 6 Roadmap Chapter 7 Roadmap Renewed
Chapter 7 Issues and Concerns Chapter 8 Further Issues for Practical

Applications
Renewed

 Chapter 9 References Renewed
Chapter 8 Appendix Chapter 10 Appendix Renewed

Page 2 Version 2.0a 2010/12/01

10/09/2010 White Paper Version 2.0a DEOS Project

Contributors

 Kenji Kono Keio University
 Jin Nakazawa Keio University
 Hideyuki Tokuda Keio University
 Hiroshi Yamada Keio University
 Hajime Fujita University of Tokyo
 Yutaka Ishikawa University of Tokyo
 Yutaka Matsuno University of Tokyo
 Toshiyuki Maeda University of Tokyo
 Yasuhiko Yokote University of Tokyo
 Taisuke Boku University of Tsukuba

Toshihiro Hanawa University of Tsukuba
 Shuichi Oikawa University of Tsukuba
 Mitsuhisa Sato University of Tsukuba
 Kimio Kuramitsu Yokohama National University

Midori Sugaya Yokohama National University
 Tatsuo Nakajima Waseda University
 Yoichi Ishiwata National Institute of Advanced Industrial Science and Technology
 Satoshi Kagami National Institute of Advanced Industrial Science and Technology
 Yoshiki Kinoshita National Institute of Advanced Industrial Science and Technology
 Toshinori Takai National Institute of Advanced Industrial Science and Technology
 Makoto Takeyama National Institute of Advanced Industrial Science and Technology
 Ichiro Yamaura Fuji Xerox Co. Ltd.

Shigeru Matsubara Dependable Embedded OS R&D Center, JST
Tomohiro Miyahira Dependable Embedded OS R&D Center, JST
Kiyoshi Ono Dependable Embedded OS R&D Center, JST

 Hiroki Takamura Dependable Embedded OS R&D Center, JST
Makoto Yashiro Dependable Embedded OS R&D Center, JST

This project is supported by CREST, Japan Science and Technology Agency

2010/12/01 Version 2.0a Page 3

DEOS Project White Paper © 2010 Japan Science and Technology Agency

Table of Contents

1 Background 6
2 Dependability 7

2.1 Brief Historical Review... 7

2.2 Environment of Embedded Systems and Requirements .. 8

2.3 Open Systems Dependability ... 10

2.4 DEOS Process ... 12

3 Phases of the DEOS Process 13
3.1 System Change-Requests based on Stakeholders’ Agreement..................................... 13

3.2 Design, Implementation, Verification, and Testing.. 14

3.3 Achievement of Accountability... 14

3.4 Failure Prevention.. 15

3.5 Responsive Action ... 16

3.6 Cause Analysis.. 17

3.7 Normal Operations ... 17

4 Project Direction 18
4.1 Project Goal ... 18

4.2 Project Objectives ... 18

4.3 Realizing Open Systems Dependability .. 18

4.4 Project Deliverables.. 22

5 Major Research and Development Status 23
5.1 Framework .. 23

5.2 Dependability Metrics and Stakeholders’ Agreement Processes 25

5.3 System Monitoring and Evidence Analysis... 27

5.4 Security ... 30

5.5 Virtualization and its Application ... 32

5.6 Systems Software Verification ... 34

5.7 Dependability Measurement Tools and Test Tools... 36

5.8 Process and International Standards .. 38

5.9 Research and Development Activity Results .. 40

6 Research and Development Organization 41
7 Roadmap 42
8 Further Issues for Practical Application 43

8.1 Handling of Intellectual Property Rights and Copyright ... 43

8.2 Open Systems Dependability Consortium... 43

9 References 44
10 Appendix 45

10.1 Dependability Obstructions... 45

10.2 Related Standards and Organizations.. 46

DEOS Project White Paper © 2010 Japan Science and Technology Agency

10.3 DEOS Project Terminology ... 48

10.4 DEOS Project Members... 50

2010/12/01 Version 2.0a Page 5

DEOS Project White Paper © 2010 Japan Science and Technology Agency

1 Background

Today’s embedded systems such as mobile information equipment, office information

equipment, home appliances, and car information systems are no longer
used as independent stand-alone devices, but are connected to a network as part of a large system.
Services are provided to these embedded systems through the network; making these devices useful
to people all over the world, and bringing convenience and comfort into the lives of the people in
societies where such systems are ubiquitous. Many of these embedded systems are increasing in
complexity and scale in order to meet the diverse and sophisticated needs of their users. In the
development of these systems, software, which has been used for some period of time and without
detailed specifications, or which have been created by other developers, are used frequently being
treated as a black box. Changes to external factors such as the modification of other systems that are
connected via a network occur frequently. The maintenance and management of these systems
involve specification changes while in use. Those factors of today’s embedded systems make it
impossible for developers and operators to know every detail of the system. As such, it is becoming
more difficult to ensure the reliability and availability of these embedded systems. In addition, fatal
system problems such as crashes caused by viruses, and information leaks due to unauthorized
access continue to occur. It has become a major responsibility of product and service providers to
take appropriate action against these threats, always ensuring user safety and security when using
these products and services.

Recently many social infrastructures have experienced failures in their systems. These took

considerable time to repair in some cases, and services were suspended until recovery, which caused
considerable loss of benefits to users. This damage to service providers is not limited to the cost of
analysis of the cause of the failure and work for recovery, but also includes the loss of business
chances while the system is down and the loss of reputation with the public. The analysis of those
failures shows that major causes of these failures include the system being developed without
sufficient understanding of the behavior of all of the components, or the system being too
complicated for every detail of the behavior of the system to be anticipated and controlled. Some
system failures are attributable to insufficient planning by the designers and programmers. In
some cases, the number of users, transactions, data volume, or coverage of the system exceeded the
initial design limit, which led to failure of the systems. Changes or the addition of system functions
after the launch of services to adapt to changes in the requirements of users caused the failure in
some cases. These cases indicate that modern computer systems should not be assumed as a
system whose function, architecture, and system boundary are fixed in both the way they are
designed and implemented and the way they are used. They should be handled as systems which
grow and change over time. It is expected that those characteristics will get stronger in the future.

Up until now, most development processes of embedded systems have adopted the common

practice of creating a reliable development plan in advance, determining in detail the product or
system specifications, and going through the long cycle of design, implementation and verification. It
has become a standard practice to perform the “PDCA” cycle to enhance the special advantages (as
well as function, performance, and quality) of individual products as well as the whole system. This
process is quite effective for the development of products or systems which are not connected to a
larger network and which have specifications and behavior that are quite defined and predictable at
the beginning of development. However, as mentioned earlier, functions, structures, and boundaries
of systems change over time, and the development and operation need to be performed under the
condition that it will be nearly impossible to write complete specifications beforehand, envision a
complete development plan, and correctly predict what all its network connections will be. For this
kind of system, the management process for developing specifications based on a predicted range of
conditions and for updating these specifications repeatedly by gathering feedback during the whole
lifecycle is very crucial. Elemental technologies and system architecture to enable this process need
to be developed [18]. The development process of a system suited to changing environments will not
be the legacy “waterfall” model which requires completeness in each development phase, but process

Page6 Version 2.0a 2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

which adopts new software components and quickly implements the required functions in order to
adjust to new requirements. The process of prototyping or trial production in actual environments,
and improving the functions and quality of the systems with feedback from users, is demanded. In
other words, we need to establish a new process in which both the feedback loops of the development
process and the feedback loops of the operation and maintenance process move forward, while these
dual loops interact with each other.

 The above discussion indicates that dependability attainment technology for systems with fixed
functions, structures, and boundaries is no longer sufficient to achieve and to improve a system’s
dependability. There is a need to establish a method to build and operate dependable systems that
are based on new concepts and technologies [1, 4, 5, 6 and 12]. In this paper, the concept of “Open
Systems Dependability” is proposed to meet those new requirements, and then the technologies, the
architecture, and the processes to realize this concept are described.

2 Dependability

2.1 Brief Historical Review

In the 1960's, the construction of a Fault Tolerant Computer was proposed to support real-time

computing and mission critical applications. Active discussion of this topic has been ongoing since
then [15 and 19]. As a result of this discussion along with the increase in scale of hardware and
software and with the spread of online services, a concept called RAS has been developed which
integrates resistance to failures (Reliability), maintenance of a high operating ratio (Availability),
and quick restoration during a malfunction (Serviceability or Maintainability), with an emphasis on
error detection and system recovery [8 and 14]. In the latter half of the 1970's, to this concept was
added the preservation of data consistency (Integrity) and the prevention of unauthorized access to
confidential materials (Security), for RASIS, an extension of RAS that has served as a standard for
evaluation. In 2000, the idea of Autonomic Computing was proposed to ensure dependability in
complex systems connected by networks with autonomic action, in the same way that the autonomic
nervous system works in the human body [9, 10, 11, and 16].

Changes in approaches taken to ensure reliability are reflected in international standards.
International Safety Standards ISO 13849-1 (EN954-1) and Safety of Machinery - Electrical
Equipment of Machines Standards IEC 60204-1 can handle simple systems, subsystems, and parts,
but are not sufficient to deal with systems that include software. Functionality Safety Standards
IEC 61508 were established in 2000 out of necessity for a safety standard for systems that include
software. In IEC 61508, a system malfunction is divided into "random hardware failure" and
"systematic failure". The probability of
random hardware failure is calculated by
monitoring malfunctions due to the
deterioration of parts; while systematic
failures, caused by incorrect system design,
development, production, maintenance, and
operation, are to be kept from exceeding
allowed target values through software
development, and a verification process such
as the V-model, and the documentation of all
operations based on the safety lifecycle.
Systems are categorized according to mode of
operation: low demand mode or high
demand/continuous mode. The target failure limit for each mode is defined and managed as the
Safety Integrity Level (SIL). The requirements of 4 stages from SIL1 to SIL4 are also defined (with
SIL4 requiring the highest safety integrity). With IEC 61058 as the base standard for software
systems, machinery-related IEC 62061, process-related IEC 61511, nuclear-related IEC 61513,

Fig.1. Dependability and Security

2010/12/01 Version 2.0a Page 7

© 2010 Japan Science and Technology Agency White Paper DEOS Project

railway-related IEC 62278, etc. were established, and for automotive systems, a DIS (Draft
International Standard) of ISO 26262 was issued in June 2009 and the final version is expected to be
issued in 2011.

railway-related IEC 62278, etc. were established, and for automotive systems, a DIS (Draft
International Standard) of ISO 26262 was issued in June 2009 and the final version is expected to be
issued in 2011.

Efforts are continuing to produce a single definition of dependability which integrates different

conceptions. In 1980, a joint committee of IFIP WG10.4 studying Dependable Computing and Fault
Tolerance and IEEE TC studying Fault Tolerant Computing was formed, and they initiated a study
on "The Fundamental Concepts and Terminologies of Dependability". The details and results of the
subsequent investigation were compiled in a technical paper that was published in 2004 [2, 3]. In
this paper, dependability and security are defined using the terms given in Figure 1. However, in
order to provide solutions to problems of complex modern systems with the functions, the structures,
and the boundaries changing over time, assuming those factors are fixed and simply dividing and
analyzing systems into these attributes and dealing with each attribute separately is insufficient.

Efforts are continuing to produce a single definition of dependability which integrates different
conceptions. In 1980, a joint committee of IFIP WG10.4 studying Dependable Computing and Fault
Tolerance and IEEE TC studying Fault Tolerant Computing was formed, and they initiated a study
on "The Fundamental Concepts and Terminologies of Dependability". The details and results of the
subsequent investigation were compiled in a technical paper that was published in 2004 [2, 3]. In
this paper, dependability and security are defined using the terms given in Figure 1. However, in
order to provide solutions to problems of complex modern systems with the functions, the structures,
and the boundaries changing over time, assuming those factors are fixed and simply dividing and
analyzing systems into these attributes and dealing with each attribute separately is insufficient.

2.2 Environment of Embedded Systems and Requirements 2.2 Environment of Embedded Systems and Requirements

 As it has already been described,
embedded systems have become much more
sophisticated and complex in order to meet
the various needs of users; and they have
grown larger in scale. The software
architecture of embedded systems is
determined, designed, and implemented
based on requirement specifications.
However, to shorten the development period
and to lower development costs, the practice
of using “black box” software, such as
existing software or software provided by
other companies, has increased. Moreover,
specification updates for function
improvement and change occur while the
system is in operation. In this situation,
amendments of the software are downloaded
and new functions are added through the
network. In this kind of environment, it is
becoming exceedingly difficult for designers
and developers to know each and every detail
of the system throughout its lifecycle (Figure
2).

 As it has already been described,
embedded systems have become much more
sophisticated and complex in order to meet
the various needs of users; and they have
grown larger in scale. The software
architecture of embedded systems is
determined, designed, and implemented
based on requirement specifications.
However, to shorten the development period
and to lower development costs, the practice
of using “black box” software, such as
existing software or software provided by
other companies, has increased. Moreover,
specification updates for function
improvement and change occur while the
system is in operation. In this situation,
amendments of the software are downloaded
and new functions are added through the
network. In this kind of environment, it is
becoming exceedingly difficult for designers
and developers to know each and every detail
of the system throughout its lifecycle (Figure
2).

Network

Change
Requirements

NetworkNetwork

Change
Requirements

Fig.2. System Components and Services

Many of the modern embedded systems

today are used with other systems to which
they are connected via a network. In this case,
users of the embedded systems utilize
services that a single domain (consisting of
networked systems) provide through the
network. A single service domain also connects and interacts with other domains at different levels,
and it is possible for services and the interface specifications of other service domains to undergo
changes or to be discontinued. In this environment, the boundary of the system or service domain
becomes unclear. Furthermore, there is the possibility that system designers and developers,
operators and users may commit unintended errors. Likewise, with the spread of networks,
unknown services are provided through the network expanding the possibility of unknown and
unexpected interactions to occur; raising the concern that the system may be attacked on purpose

Many of the modern embedded systems
today are used with other systems to which
they are connected via a network. In this case,
users of the embedded systems utilize
services that a single domain (consisting of
networked systems) provide through the
network. A single service domain also connects and interacts with other domains at different levels,
and it is possible for services and the interface specifications of other service domains to undergo
changes or to be discontinued. In this environment, the boundary of the system or service domain
becomes unclear. Furthermore, there is the possibility that system designers and developers,
operators and users may commit unintended errors. Likewise, with the spread of networks,
unknown services are provided through the network expanding the possibility of unknown and
unexpected interactions to occur; raising the concern that the system may be attacked on purpose

NetworkNetwork

Fig.3. Services through Networks with Human
Interactions

Page 8 Version 2.0a 2010/12/01 2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

with malicious intent. For these reasons, the advent of networking has made predictability much
more difficult to attain (Figure 3).

The analysis and classification of the cause of system failures discussed above, with consideration

of the systems and services from both development and operation standpoints, will lead to the
following factors.

 < Incomplete Specifications and Implementation, and Difficulty of Understanding the
System>
It often happens that the initial requirement specifications become inadequate, the system’s
behavior becomes difficult to
fully understand, and
guarantees at the time of
shipment cannot be made.
(Fig.4). Specifically, there is
likely to be:

 An error or omission in the
specification, design
implementation, or testing,
caused by discrepancies in
characterizations of the
system during the
requirement development
phase, specification phase,
design phase,
implementation phase, and
testing phase, or by an error
in the documentation

 An error or omission in
specification, design implementation, or testing, caused by the difficulty of understanding
the whole system, particularly its software, due to its complexity and size

Fig.4. Incomplete Specifications/Implementation and the

Difficulty of Understanding the System

 Poor system design, inadequate capacity of the planned system, demands upon
programmers surpassing human capability

 An error in administration, operation, or maintenance cased by the difficulty of
understanding the whole system, particularly its software, due to its complexity and size

o An error in updating or
amendment procedures

Fig.5. Uncertainty at Usage Environment, and Difficulty in
Predicting System Behavior

o Expiration of license
 Use of “black box” components

or legacy codes based on their
external specifications,
without knowledge of their
internal design

 < Uncertainty about Usage
Environment, and Difficulty in
Predicting System Behavior>
Changes in the usage environment
and configuration throughout the
lifecycle of the system make it
difficult to completely predict the
behavior of the system while still
in the design phase. (Fig.5)
Specifically, there are:

 Changes in user’s expectations

2010/12/01 Version 2.0a Page 9

© 2010 Japan Science and Technology Agency White Paper DEOS Project

or capability during the maintenance and operation phases – changes in requirements
and level of requirements, operation capability, or skill/experience/negligence of
operators.

 Unexpected usage changes, such as those brought about by the significant increase in
users, or number of units, as well as by changes in economy.

 Update or alteration of a component's function and system configuration on a system in
operation through manual operation on through network.

 Specifications of services and components that are being used are corrected and updated
via the network; unexpected network connections; and, intentional malicious attacks and
intrusions through external entities.

Today’s embedded systems with ever changing functions, structures, and boundaries must obtain

dependability and be able to deal with the inherent incompleteness and uncertainty. We cannot
create a flawless system that can already handle all possible scenarios that could take place in the
future. Failure, therefore, cannot be completely avoided.

Contemplation of this situation has led people to make various definitions of “dependability”. The

following are examples of such definitions:
 “The continuing state where no failures or malfunctions occur, or where the situation is

grasped immediately when abnormalities do occur, the subsequent situation is predicted, and
social panic and catastrophic breakdown is prevented, at reasonable cost. ” [7]

 “The capacity for the services offered by the system to be maintained at a level acceptable for
the user even if various accidents occur.” [17]

2.3 Open Systems Dependability

As we have discussed so far, we need to deal with the dependability of systems of which functions,
structures, and boundaries keep changing over time. Systems with those characteristics are called
Open Systems, in contrast to Closed Systems which assume fixed functions, structures, and
boundaries that stay the same through the life of the systems.

The characteristics of Closed Systems are;
 The boundary of the system is

definable.
 The interaction with the outer

world is limited, and the system
functions are fixed.

 The subsystems or components of
the system are fixed and their
relationship does not change over
time.

 The system is observable from
outside of the system.

 Reductionism is applicable (a whole
system is dividable into subsystems
or components, and the behavior of
the whole system can be understood by understanding all of the subsystems or the
components).

On the other hand, the characteristics of Open Systems are;

Subsystem

Subsystem

SubsystemSubsystem

Closed Systems

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Open Systems

SubsystemSubsystem

Subsystem

SubsystemSubsystem

Closed Systems

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Open Systems

Fig.６. Closed Systems and Open Systems

 The boundaries of the systems change over time.
 There is interaction with the outer world, and the system functions change over time.
 The subsystems or components of the system and their relationship change over time.

Page 10 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

 An observer of a system is inherently a part of the system, and the system is not observable
from outside of the system.

 Therefore, reductionism is not applicable.

The computer systems we need to manage today hold the characteristics of opens systems. That

is, those systems are connected to a network and the boundaries of the systems are unclear and
change over time. Requirements for the functions and performance of these systems from
stakeholders such as users of the services, providers of the services, and providers of the systems,
etc., change, and the functions and performance of the systems change over time. Replacement or
changing the components of the system occurs consistently for performance improvement, bug fixes,
expiration of maintenance, and expiration of contracts, and the relationship of the subsystems or
components of the system keep changing.

It may be possible to assume a system as a closed system at a specific time, which means there is

no change for a certain period of time, and then consider the lifecycle of the system by accumulating
these periods of time. In this case, the function, the structure, boundary, and specifications of the
system need to be defined at each time, and the design, verification, and the testing of the system are
done based on the specifications, repeating this process for each period of time in the lifecycle.
However, it is extremely difficult to separate the phases that the system is fixed and in operation
and the phases where the system is in the process of modification. Usually it is most important that
the service and operation of the system is continued, even with changes to the system on-going. To
approach this situation, we should focus on the “ever-changing systems” and establish the concept of
dependability focusing on the continuity of services and business by managing the continuously
changing systems. Our approach is to consider the concerned systems as open systems and to focus
on how we should improve dependability throughout the lifecycle of the systems. Based on our
discussion thus far on the characteristics of modern embedded systems, we define Open Systems
Dependability with the following description:

Functions, structures, and boundaries of modern embedded systems change over time. Hence

incompleteness and uncertainty may result in failures in the future, and they are inherent to
embedded systems (factors in open systems failure). Open Systems Dependability is the ability to
continuously prevent the said factors from causing failure, to take appropriate and quick action
when failures occur to minimize damage, to safely and continuously provide the services expected by
users as much as possible, and to maintain accountability for the system operations and processes.

“Open Systems Dependability” does not conflict with the “dependability” that has been studied,

discussed and classified by many researchers. Until now, technologies for improving the safety and
security of systems have been researched, discussed and developed with a focus on incidental and
intentional faults. Our approach is to improve the dependability of systems by minimizing the
factors that specifically cause open systems failures (this can largely be done during the
manufacturer’s development phase before shipment) and minimizing the damage due to open
systems failures (this is largely done during the operation phase after shipment), concentrating on
open systems failures resulting from incompleteness and uncertainty. Indeed, “Open Systems
Dependability” complements and further enhances “closed systems dependability”.

In summarizing the discussion in the previous paragraphs, Open Systems Dependability is

defined as “providing services continuously by managing unpredictable failures on ever-changing
systems”. “Managing” means to assure sustainability of services with the best effort, which is most
important to both users and providers of the services. The continuity of business which is assured
as a result of continuity of service is also important for service providers.

2010/12/01 Version 2.0a Page 11

© 2010 Japan Science and Technology Agency White Paper DEOS Project

2.4 DEOS Process

To achieve open systems dependability, that is to achieve continuity of services on the open

systems in which functions, structures, and boundaries of the systems keep changing over time, we
concluded that an approach from the process perspective is required. This is the process of the
continuous improvement of dependability. We call this process the DEOS Process. We identify
two cycles in this process; one is the “requirements/environment change accommodation cycle” which
is a cycle to adapt the system according to requirements or environmental change, and the other is
the “failure reacting cycle” which is a cycle to take immediate action and fix failures that occur in the
system in service and operation. In summary a DEOS Process is a process to continuously improve
the dependability of computer systems, and consists of 2 cycles (Fig.7), namely

1. Requirements/Environment Change Accommodation Cycle, and
2. Failure Reacting Cycle.

The Requirements/Environment Change

Accommodating Cycle begins is triggered by
the change of requirements of stakeholders
or by a change to the system’s environment.
Examples of requirements changes are
requests to change the content or the quality
of services or to improve the function or the
performance of the system, and requests to
change the services or systems to meet
changes in regulations or standards. On
the other hand, examples of environmental
changes are changes to network function or
performance, changes raised by the change
of services provided by other systems in the
network, changes caused by hardware
change, changes caused by the expiration of
software licenses or maintenance contracts, and the changes required to cope with an increase in
users. To accommodate those changes, the cycle, to get agreement of these change by the
stakeholders, to go through design, implementation, verification, and testing, to describe the change
and improvements to the users, and then to resume normal operation, begins.

TestVerificationDesign

D-Case
growth cycle

DEOS Process

Requirement/Environment
Change accommodating cycle

Failure reacting
cycle

Achievement of
accountability

D-Case

System change requests
based on stakeholders’

agreement

Implementation

Cause analysis

Responsive action

Failure prevention Anomaly detection/
Unexpected failure

happen

Stakeholders’
requirements/

System
environment
changes

Normal
operation

TestVerificationDesign

D-Case
growth cycle

DEOS Process

Requirement/Environment
Change accommodating cycle

Failure reacting
cycle

Achievement of
accountability

D-Case

System change requests
based on stakeholders’

agreement

Implementation

Cause analysis

Responsive action

Failure prevention Anomaly detection/
Unexpected failure

happen

Stakeholders’
requirements/

System
environment
changes

Normal
operation

Fig.7. DEOS Process

The Failure Reacting Cycle requires prompt action. The cycle is triggered by failure prediction or

by the occurrence of a fault or error, and in some cases is triggered by a failure. In the phase of
failure prevention, responsive action, and
cause analysis. Preventive action is taken if
possible. In the case that a failure has
occurred, an immediate fix must be taken. It
is crucial to take accountability, that is an
explanation to service and system users
about the status of the failure, the immediate
action taken, the plan for long term action
and a permanent fix, and so on, and then the
service and system go back to normal
operation. The long term action and the
permanent fix, with the result of root cause
analysis, are agreed to be implemented by
stakeholders. That is, this initiates the
Requirements/Environment Change
Accommodating Cycle. Normal operation
includes preventive maintenance, daily
improvement action (Kaizen), and preventive

Requirement/Environment

Change accommodating cycle

Failure reacting cycle

Requirement/Environment

Change accommodating cycle

Failure reacting cycle

Fig.8. Image of the DEOS Process double helix in
space-time

Page 12 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

dry runs to be done before or after daily service. dry runs to be done before or after daily service.

The characteristics of the DEOS process are; 1)it consists of the two cycle, 2) it contains two

phases, “system change-request based on stakeholders’ agreement” and “achievement of
accountability” . “D-Case” is used in the DEOS Process to support stakeholders to understand
change-requests brought up among themselves, to examine and discuss each interest related to the
change-request, and to reach agreement on the change to be made. As it has already been described,
the DEOS Process implies that the system grows up over time, and the process forms into a double
helix in space-time. Figure 8 shows the image of the double helix.

The characteristics of the DEOS process are; 1)it consists of the two cycle, 2) it contains two
phases, “system change-request based on stakeholders’ agreement” and “achievement of
accountability” . “D-Case” is used in the DEOS Process to support stakeholders to understand
change-requests brought up among themselves, to examine and discuss each interest related to the
change-request, and to reach agreement on the change to be made. As it has already been described,
the DEOS Process implies that the system grows up over time, and the process forms into a double
helix in space-time. Figure 8 shows the image of the double helix.

3 Phases of the DEOS Process 3 Phases of the DEOS Process

It has already been described that the DEOS Process is a process to continuously improve the

dependability of open systems, and consists of the 2 cycles requirements/environment change
accommodating cycle, and failure reacting cycle. The concept and required actions in each phase
are discussed in this chapter. The phases in the “requirements/environment change
accommodating cycle” are “system change-requests based on stakeholders’ agreement” and “design,
implementation, verification, and testing”, and “achievement of accountability phase”. The phases in
the “failure reacting cycle” are “failure prevention”, “responsive action”, “cause analysis”, and again
“achievement of accountability phase”. It is assumed that continuous dependability improvement
action such as preventive maintenance, daily improvement action (Kaizen), preventive dry runs
before or after the daily service, and education to engineers and operators are implemented in
normal operation.

It has already been described that the DEOS Process is a process to continuously improve the
dependability of open systems, and consists of the 2 cycles requirements/environment change
accommodating cycle, and failure reacting cycle. The concept and required actions in each phase
are discussed in this chapter. The phases in the “requirements/environment change
accommodating cycle” are “system change-requests based on stakeholders’ agreement” and “design,
implementation, verification, and testing”, and “achievement of accountability phase”. The phases in
the “failure reacting cycle” are “failure prevention”, “responsive action”, “cause analysis”, and again
“achievement of accountability phase”. It is assumed that continuous dependability improvement
action such as preventive maintenance, daily improvement action (Kaizen), preventive dry runs
before or after the daily service, and education to engineers and operators are implemented in
normal operation.

3.1 System Change-Requests based on Stakeholders’ Agreement 3.1 System Change-Requests based on Stakeholders’ Agreement

When requirements from the stakeholders change (including new requirements), the environment
of the system changes, or a change in the system is required as a result of cause analysis of a failure,
changes are thoroughly described as written specifications without exception so that all the
stakeholders understand the change without any misunderstanding. Requirement engineering
addresses the method of describing the requirements and the tools to support the method, which
should be fully utilized in this context.

When requirements from the stakeholders change (including new requirements), the environment
of the system changes, or a change in the system is required as a result of cause analysis of a failure,
changes are thoroughly described as written specifications without exception so that all the
stakeholders understand the change without any misunderstanding. Requirement engineering
addresses the method of describing the requirements and the tools to support the method, which
should be fully utilized in this context.

Here the stakeholders, we assume in this

white paper, are as listed.
Here the stakeholders, we assume in this

white paper, are as listed.
 Users of services or products (the whole

society in the case of systems for social
infrastructure),

 Users of services or products (the whole
society in the case of systems for social
infrastructure),

 Providers of services or products, Providers of services or products,
 Providers of systems; Providers of systems;

 Designers and developers, Designers and developers,
 Operators and maintainers, Operators and maintainers,
 Providers of hardware, and Providers of hardware, and

 Certifiers (Authorizers) of services or
products.

 Certifiers (Authorizers) of services or
products.

In order to realize accommodation to change

it is essential for all of the stakeholders to
correctly understand the requirements,, to find
solutions to possibly conflicting requirements,
and to make decisions on how to implement and
with what schedule. For this “description language or notation for stakeholders to share
understanding” or “executable description language or notation for the agreement of requirements

In order to realize accommodation to change
it is essential for all of the stakeholders to
correctly understand the requirements,, to find
solutions to possibly conflicting requirements,
and to make decisions on how to implement and
with what schedule. For this “description language or notation for stakeholders to share
understanding” or “executable description language or notation for the agreement of requirements

D-Case
Top
Structure

Goal

Strategy

Sustainability of
Services

Consider the DEOS
process

Requirement/Environment
Change accommodating cycle

Failure
reacting cycle

Consider the stages of
Requirement/Environment

Change accommodating cycle

System change requests
based on stakeholders’

agreement

Achievement
of

accountability

Responsive
action

Design/Implementatio
n/Verification/Test

Cause
analysis

Failure
prevention

Sub-Goal

Consider the stages of
Failure reacting cycle

Strategy

Achievement
of

accountability

D-Case
Top
Structure

Goal

Strategy

Sustainability of
Services

Consider the DEOS
process

Requirement/Environment
Change accommodating cycle

Failure
reacting cycle

Consider the stages of
Requirement/Environment

Change accommodating cycle

System change requests
based on stakeholders’

agreement

Achievement
of

accountability

Responsive
action

Design/Implementatio
n/Verification/Test

Cause
analysis

Failure
prevention

Sub-Goal

Consider the stages of
Failure reacting cycle

Strategy

Achievement
of

accountability

Fig.9. D-Case Top Structure

2010/12/01 Version 2.0a Page 13

© 2010 Japan Science and Technology Agency White Paper DEOS Project

and specifications” is required to realize
the process described. A set of the
concept, method, and tool called D-Case is
under study and development in the DEOS
project. D-Case uses GSN (Goal
Structured Notation), which is a
description notation similar to Assurance
Case. Assurance case is described in a tree
structure. The tree structure itself is not
substantial, but the strategy to decide how
to branch from a node, the construction, or
the condition of the branch, which are
described as a DEOS process, is significant.
The top structure of D-Case which
describes Open Systems Dependability will
be as shown in figure 9. The goal will be
discussed and broken into sub-goals in the
process of D-Case writing, and finally each
node is connected to corresponding
evidence. The bottom structure of D-Case will be as shown in figure 10.

D-Case
Bottom
Structure

Evidence

Evidence

Sub-Goal

Sub-Goal

D-Case
Bottom
Structure

Evidence

Evidence

Sub-Goal

Sub-Goal

Fig.10. D-Case Bottom Structure

3.2 Design, Implementation, Verification, and Testing

This phase corresponds to the so-called design and development phase. There has been a lot of

research and development in this area, and various methods and tools have been proposed. Useful
methods and tools should be utilized in this phase for open systems as well. There are some specific
requirements for this phase to improve open systems dependability.

 Design and implementation technology

 Describe the requirements correctly and document as specifications
 Design a system based on the specifications without mistakes
 Implement the design without mistakes

 Verification and testing technology
 Test the implemented system correctly according to the specifications
 Detect software errors using formal method
 Verify the system on a simulator
 Measure system margin by injecting faults or abnormal conditions
 Compare the system with expected normal status or known standard levels
 Measure the dependability indices
 Verify the validity of the dependability indices

3.3 Achievement of Accountability

Service providers, providers of social infrastructure, and commodity producers in particular have

the responsibility to disclose and explain to service consumers, users of products, and society in
general about occurrences and causes of failures, expected recovery time, and to amend their
development and operation processes and procedures in routine operations so as to prevent such
failures from occurring in the future. Carrying out these activities satisfies not only the social
responsibility of the providers, but also creates the consensus required to run social infrastructure,

Page 14 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

and protect the brand of the service or system providers. It also helps to gain trust from service
consumers and society,, and to protect their profits.

(1) Accountability in requirements/environment change accommodating cycle

 Describing changes of requirements
 Investigation into the stakeholders’ requirements
 Processes and status of stakeholders’ agreement
 Content of services, system functions, schedule of service offerings, and terms and

conditions of the offering, after the accommodation of the change
 Status of compliance to laws and standards

 Describing change of environment
 Investigation into the environment changes
 Processes and status of stakeholders’ agreement
 Content of services, system functions, schedule of service offerings, and terms and

conditions of the offering, after the accommodation of the change
 Status of compliance to laws and standards

(2) Accountability in failure reacting cycle

 Describing status at failure prevention or at failure occurrence
 Records of system monitoring and evidence of system behavior
 Status of failure prevention
 Status of responsive action, temporary fix, and service recovery schedule
 Status of cause analysis
 Schedule for root cause analysis and permanent fix implementation
 Processes and status of stakeholders’ agreement
 Records of design and development, operation and maintenance, and education of

engineers
 Records of education of personnel related to the services

 Describing processes and status of daily business and system operation
 Processes of reaching stakeholders’ agreement and of maintenance of the agreement

(D-Case to be described later)
 Compliance with the DEOS Process
 Education and processes related to personnel for system design, development, operation,

and maintenance

Systems used to provide services need to have the capability to support the achievement of
accountability as described above.

3.4 Failure Prevention

(1) Prediction of failures and detection of anomalies

We will be able to establish a procedure to prevent failures if we can predict them while systems
are in operation by detecting some anomalies in advance which are potential causes of failure. The
action taken will depend upon how soon we can predict the failure. The earlier we can predict it,
the more valuable the prediction is for the system or service providers. For instance, we may be
able to prevent the failure if we can predict it a few minutes before. Even if we cannot prevent it
from occurring, we may be able to minimize any damage caused by the failure. If we predict a
failure a few seconds before its occurrence, we may be able to prevent the entire system from
shutting down, even though it may be impossible to prevent partial failure. Alternatively, if we can
predict a failure a few milliseconds in advance, we may be able to keep the records of operations and

2010/12/01 Version 2.0a Page 15

© 2010 Japan Science and Technology Agency White Paper DEOS Project

system status changes which will be useful for the analysis of the root cause of the failure later, even
if we cannot prevent its occurrence or system shutdown.

The operations and status of the system before a failure could be recorded on a device like a flight
recorder, which keeps record of flight data before an aircraft accident by continuously writing the
latest flight data. However, if the system predicts a failure in advance, the system will have more
time to select the relevant data and to record only that data for a longer period. Therefore, we
consider that methods to predict failures and to detect anomalies are critical for system
dependability. Such methods would involve:

 Detecting anomalies which caused similar failures
 Infer which anomalies are relevant from patterns of failures in the past

 Detecting signs of anomalies

 Predict anomalies
 Detect signs which may imply failures in some cases

 Rehearsals (to be described in section 3.7)

(2) Restricting/Limiting system resources to prevent failures

We may manage to avoid system crashes or to take some action by postponing an occurrence of a

system crash by restricting system resources when an anomaly which suggests a system crash is
detected.

 Restrict behavior of a component which shows an anomaly so that the component may not

cause a failure

3.5 Responsive Action

Failures are inevitable in open systems environments. Although predictions and rehearsals are
beneficial, they cannot be carried out in all situations. For situations where they cannot be applied,
it is crucial to take some other action to minimize damage after a failure. The action required after
the occurrence of a failure are described below. There are two goals for action after a failure: One is
to maintain or regain the trust of service consumers by minimizing their dissatisfaction and
inconvenience, and the other is to maintain the business profits of the service providers.

It is expected the responsive action is taken automatically and autonomically while systems are in
operation. However usually this is not the case, and in most cases the operation of whole systems or
a part of the systems are suspended temporarily, stakeholders make some decisions, and
maintainers or operators take some action with human intervention. It is preferable that the
period of suspended time is minimized. To manage this situation, usually twofold action is planned;
temporary fix or solution, and long term or permanent fix or solution with root cause analysis.

The action thus must:
 Minimize the damage and prevent a service shutdown by isolating failures

 Temporarily halt the failed service, or return the service to a safe operational mode
 Maintain services other than the failed service
 Minimize inconvenience to consumers due to the failed service

 Quickly uncover the root cause of the failure, repair the failure, and effect recovery of the system
 Discover the root cause of the failure, and determine the repair which will prevent the same

failure from occurring in the future
 Minimize the insecurity of service consumers
 Maintain and even improve mutual trust

Page 16 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

3.6 Cause Analysis

It is always expected to pinpoint the cause of failure, and it is difficult in many cases. Even if the

cause of failure is not pinpointed, narrowing down the area of the cause of failure will reduce the cost
and time for the cause analysis significantly, and as a result, it will help to shorten the period of
system down time and to find the root cause and long term solution. The technologies required to
support this need to be investigated and developed. Accurate recording of system behavior or
appropriate recording of evidence for cause analysis play a key role.

There has been significant research and development in this area in the past and this is on-going.

The technology in this area is also covered in the DEOS project with a new concept and methodology.
The focus areas in this project are;

 To observe system behavior and keep records (logs)
 To investigate and develop the technology to manage large amount of records and to keep only

required log without bankruptcy.
 To narrow down the area of the cause of failure in case pinpointing of the cause of failure is

not achievable
 To record the behavior of the system just before the system goes into system crash (System

Recorder)

3.7 Normal Operations

Keeping records of the systems’ operation and inspecting the records periodically will help to

maintain the dependability of the system. The operators or maintainers may find the symptoms of
system failure from this activity. Memory leak may cause significant system failure at some point
of operation. Keeping the system memory at clean status is an effective preventive action.

 Keep records of system operation
 Prevent system aging

Proactive rehearsal to simulate future systems helps to predict future failure. A failure may

occur when a system reaches a certain state and then runs past a certain date and time. In this case
we can see whether a failure may occur by advancing the system date and time. This is known as a
rehearsal. The rehearsal will be effective for failure prevention described in section 3.4. Appropriate
rehearsal operations of an actual computer system while the system is in operation are determined
in accordance with the computer system itself and the operation environment. (During the
development phase, similar activities are frequently performed, and they are called “testing.”) If
the system operation is suspended every night, some rehearsals can be done while the system is
suspended.

However, if the computer system is available for use 24 hours a day and 365 days a year, some
rehearsals can be performed only upon delivery, before it starts service to its customers. If we
subsequently want to perform any rehearsals, we will need a mirror system.

 Rehearsals may be performed before the service becomes available to customers (before the
initial release of the system, or before the system starts service each day)

 Rehearsals may be performed on a mirror system.

2010/12/01 Version 2.0a Page 17

© 2010 Japan Science and Technology Agency White Paper DEOS Project

4 Project Direction

4.1 Project Goal

In this project, “Dependable Operating Systems for Embedded Systems Aiming at Practical
Applications”, the requirements for today’s embedded systems such as reliability, security, and
usability, are derived from the concept of “Open Systems Dependability”. A dependable OS for
embedded systems, as well as the concepts, architecture, specifications/implementation guidelines,
management process, framework, development environment and tools and other related platform
technologies necessary for various types of practical implementation are developed. Evaluation
criteria are set, clarified, and standardized. In this project, “OS” is not defined as “operating
system” in the strict sense of the word. “OS” here has a broader meaning, including all system
software layers supporting the system applications. Moreover, the embedded systems we have in
mind are defined so as to include systems used as social infrastructure and connected to a network,
such as traffic information control systems and railway ticket systems.

Note that, at present, since systems for monitoring, production control, communication control,

office information equipment, vehicle information equipment, robots, information electronic devices,
mobile phones, mobile information terminals, and others can be regarded as applications of the OS
we seek, further narrowing of our range of research according to real users’ needs should be
considered.

4.2 Project Objectives

The following are the objectives of this project:

1 Establish a clear concept of dependability appropriate for the 21st century.

1.a Evaluate and refine the concept of Open Systems Dependability that was discussed in Chapter 2.
1.b Develop elemental technologies, management processes, and system architecture that will

enhance Open Systems Dependability throughout a service and system’s lifecycle.
2 Promote practical applications.

 Create specification and implementation guidelines for a dependable embedded system that is suited
for actual practical uses; develop frameworks, a development environment, and tools; establish a
management process; and construct a demonstration system for evaluation.

3 In accordance with 1 and 2 above, set an evaluation standard for dependability, and promote its
standardization and clarification (to be suitable as an international standard.)

4 Start a consortium or user organization for the utilization, maintenance, and enhancement of 1
to 3 above.

The elemental technologies, processes, management practices, and system architecture required

to build a dependable system will be evaluated and enhanced throughout the development of
practical systems in a continuous improvement cycle. The deliverables of the project are expected to
be used by industry in the provision of products and services, and subsequently improved through
the feedback received regarding their practical usage. Furthermore, it will be essential in the future
to establish a society-wide open structure to support the sharing of system failure information, and
to carry out social responsibilities such as indemnity and accountability.

4.3 Realizing Open Systems Dependability

There are 3 domains in the implementation structure that need to be integrated in a
well-organized way to properly manage Open Systems Dependability: elemental technologies,
management processes, and system architecture [13].

Page 18 Version 2.0a

2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

This project conceptualizes,
does research for, and develops
a fundamental, well-organized
structure. We intend to make
our results widely utilizable by
embedded system and service
providers (Fig. 11). The
research teams from 9 research
organizations are working as
one to achieve this objective.

This project conceptualizes,
does research for, and develops
a fundamental, well-organized
structure. We intend to make
our results widely utilizable by
embedded system and service
providers (Fig. 11). The
research teams from 9 research
organizations are working as
one to achieve this objective.

Processes & Management

Standardizations

● Evaluation Criteria
● International Standards
● Guidelines

Processes

●

●
Failure Reacting Cycle
Requirement/Environment
Change Accommodating Phase

System Architecture

Elemental Technology

● D -Case

● Policy

● Evidence

Hardware

システム監視・管理機構

カーネル

アプリケーション監視・
管理機構

マ
Aマ
vマ
笠マ
P±
[マ
Vマ
・マ
党

マ
Aマ
vマ
笠マ
P±
[マ
Vマ
・マ
党リファレンス

システム

フレームワーク

ランタイム

エビデンス管理・
記録機構

カーネル

ポリシー管理・
制御機構

マ
Aマ
vマ
笠マ
P±
[マ
Vマ
・マ
党

マ
Aマ
vマ
笠マ
P±
[マ
Vマ
・マ
党Framework

● Preventability

・ System and Application Monitoring

・ Anomaly and Predictive Detection

・ Security Attack Protection

● Manageability

・ Isolation ／Migration ／Reconfiguration

● Improvability

・ Lifecycle Management
● Accountability

・ Evidence Management and Logging

・ Policy and D-Case Management

Tools
● Design tools

・ D -Case Editor

・ Policy Scripter

● Verification tools

・ Type Checker

・ Model Checker

● Test tools

・ DS -Bench

・ D -Cloud

・・・

● Monitoring and Analyzer

・ Monitor & Logging

・ Incident Analysis

・ Failure Prediction

・ Evidence Registration

・ Cause Analysis

● Constraint and Control

・ Isolation

・ Migration

・ Reconfiguration/Undo

・ Quota

・ Security

・ Software Anti -aging

● Verification and Evaluation
・ Benchmarking

・ Metrics

・ Fault Injection

● Management

・ Policy Management

・ D-Case Management

・・・

・・・
・・・

・・・

● Record

・ System Recorder

・ Record Box

・・・

Processes & Management

Standardizations

● Evaluation Criteria
● International Standards
● Guidelines

Processes

●

●
Failure Reacting Cycle
Requirement/Environment
Change Accommodating Phase

System Architecture

Elemental Technology

● D -Case

● Policy

● Evidence

Hardware

システム監視・管理機構

カーネル

アプリケーション監視・
管理機構

マ
Aマ
vマ
笠マ
P±
[マ
Vマ
・マ
党

マ
Aマ
vマ
笠マ
P±
[マ
Vマ
・マ
党リファレンス

システム

フレームワーク

ランタイム

エビデンス管理・
記録機構

カーネル

ポリシー管理・
制御機構

マ
Aマ
vマ
笠マ
P±
[マ
Vマ
・マ
党

マ
Aマ
vマ
笠マ
P±
[マ
Vマ
・マ
党Framework

● Preventability

・ System and Application Monitoring

・ Anomaly and Predictive Detection

・ Security Attack Protection

● Manageability

・ Isolation ／Migration ／Reconfiguration

● Improvability

・ Lifecycle Management
● Accountability

・ Evidence Management and Logging

・ Policy and D-Case Management

Tools
● Design tools

・ D -Case Editor

・ Policy Scripter

● Verification tools

・ Type Checker

・ Model Checker

● Test tools

・ DS -Bench

・ D -Cloud

・・・

● Monitoring and Analyzer

・ Monitor & Logging

・ Incident Analysis

・ Failure Prediction

・ Evidence Registration

・ Cause Analysis

● Constraint and Control

・ Isolation

・ Migration

・ Reconfiguration/Undo

・ Quota

・ Security

・ Software Anti -aging

● Verification and Evaluation
・ Benchmarking

・ Metrics

・ Fault Injection

● Management

・ Policy Management

・ D-Case Management

・・・

・・・
・・・

・・・

● Record

・ System Recorder

・ Record Box

・・・

Fig.11. Realizing Open Systems Dependability

(1) Systems Architecture (1) Systems Architecture

The system architecture
should have the following
features in order to integrate
the elemental technologies and
the management processes
effectively:

The system architecture
should have the following
features in order to integrate
the elemental technologies and
the management processes
effectively:

 Schemes for implementing elemental technologies Schemes for implementing elemental technologies
 Schemes for supporting the management processes (cycle of planning, execution,

monitoring, and analysis)
 Schemes for supporting the management processes (cycle of planning, execution,

monitoring, and analysis)
 Schemes supporting system improvement, and enabling changes while the system is in

operation.
 Schemes supporting system improvement, and enabling changes while the system is in

operation.

To achieve and improve Open Systems Dependability, we need to construct a set of system
software including middleware and various tools used in development phases and operational
phases. In this project, we realize the set of software by the framework and tools described below.

To achieve and improve Open Systems Dependability, we need to construct a set of system
software including middleware and various tools used in development phases and operational
phases. In this project, we realize the set of software by the framework and tools described below.

Framework Framework

We call our implementation of the framework “D-fops”, which stands for DWe call our implementation of the framework “D-fops”, which stands for Dependability
Framework for Open Systems. D-fops is intended to incorporate our research accomplishments
into an integrated software package that companies can use to evaluate the usefulness of the
concept of Open Systems Dependability and of dependability-related technologies in their products
or systems. Research integrated into D-fops includes “monitoring and analyzing”, “virtualization
technologies and their applications” and “security,” which are described later in this document.

If some companies are interested in using the code in an experimental environment, the
Dependable Embedded Operating System Research and Development Center (DEOS R&D Center)
will provide a system for evaluation of the software together with them. D-fops will be a reference
implementation example, and a user may customize it for use in their commercial products or
services.

Tools

A set of tools called DEOS tools will be developed which incorporates the research
accomplishments regarding dependability metrics and agreements, policy management, system
software verification, and dependability metrics measurements and evaluation. Although some
tools may be used alone, we intend that most of the tools will be effectively utilized together with
existing tools for design, verification, testing, operation, and management. We plan to evaluate
the usefulness of the concept of the Open Systems Dependability and of our framework and tools
in actual development and operation.

2010/12/01 Version 2.0a Page 19

© 2010 Japan Science and Technology Agency White Paper DEOS Project

(2) Elemental Technologies

The following table shows elemental technologies which we think at present are mandatory to

achieve Open Systems Dependability, and how they contribute to each phase of DEOS processes
described in Section 2.4.

Sy
st

em
 c

ha
ng

e
re

qu
es

ts
 b

as
ed

on
 s

ta
ke

ho
ld

er
s’

ag
re

em
en

t

D
es

ig
n/

Im
pl

em
en

ta
tio

n/

V
er

ifi
ca

tio
n/

Te
st

in
g

A
ch

ie
ve

m
en

t o
f a

cc
ou

nt
ab

ili
ty

Pr
ev

en
ta

bi
lit

y

R
es

po
ns

iv
e

ac
tio

n

C
au

se
 a

na
ly

si
s

N
or

m
al

 o
pe

ra
tio

n

R
el

at
ed

 s
ec

tio
ns

System monitoring and logging
（monitoring & logging）

✔

✔

✔

✔

✔

✔

5.3.
5.5.

Event analysis and verification
（incident analysis）

✔

✔

✔

✔

✔

✔

5.3.

Predictive detection（failure
prediction）

✔

 5.3.

M
on

ito
ri

ng
 &

 A
na

ly
zi

ng

Cause analysis

✔

✔

✔

✔

✔

✔

5.3.
5.5.

System resource control and behavior
control（quota）

✔

✔

 5.1.

Software aging prevention

✔

✔

5.5.

Security attack protection
throughout network（security）

✔

✔

✔

5.4.
5.5.

Building system containers
（isolation）

✔

✔

✔

 5.5.

Verification of virtualization layer

✔

 5.5.

Testing with time-shift（time-shift
rehearsal）

✔

✔

5.1.

Isolation, reconfiguration and
restoration of failed part
（isolation/reconfiguration/removal）

✔

 5.1.

R
es

ou
rc

e
A

llo
ca

tio
n

&
 C

on
tr

ol

Subsystem removal and repair
（migration）

✔

 5.1.

Page 20 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

Recording at the last minute before
system goes down（system recorder）

✔

✔

✔

 5.1.
R

ec
or

di
ng

Consistent timing system and
protection against fake data（record
box）

✔

✔

✔

✔

✔

5.1.

Model checking for systems software

✔

✔

 5.6.

Type checking for systems software

✔

✔

 5.6.

Dependability evaluation metrics
（metrics）

✔

✔

✔

✔

5.2.

Measurement of system load,
anomalies, and behavior

✔

✔

✔

5.7.

V
er

ifi
ca

tio
n

&
 e

va
lu

at
io

n

Speeding up a large scale system test
by resource management

✔

✔

 5.7.

Dependability consensus description,
update and management
(dependability case management）

✔

✔

✔

✔

✔

5.2.

Fail safe mechanism for unknown
failure

✔

✔

 5.1.

M
an

ag
em

en
t

Policy script and management

✔

✔

✔

✔

✔

5.2.
5.3.

Table 1. Elemental technologies and how they contribute to the four characteristics

Note: The five categories in the leftmost column are for reference purposes. The usage of each
technology is not limited to these categories.

(3) Processes & Management

As we discussed in the previous chapter, making open system services continuously available
requires preventing system failure in advance, responding to unexpected failures quickly, and
improving the system appropriately to accommodate changes in the stakeholders’ requirements and
the systems environment. In addition to these, the actions to system failures or the activities for
the system improvement need to be described to stakeholders. As it has been discussed in Chapters
2 and 3, we propose a DEOS Process consisting of a “requirements/environment change
accommodation cycle” and a “failure reacting cycle” to achieve this.

The current V-model and agile software development processes focus on the system development
phase. The DEOS Process is different from these conventional models in that it focuses on the
operation and maintenance cycle. We consider that the system development phase covered in
conventional software development processes is a very early, albeit distinctive, part of the operation
and maintenance cycle in that it also is carried out incrementally according to changes in
stakeholders’ requirements and the system environment. Also, reacting to unexpected failures
appropriately is important for open systems. We assumed two cycles based on the above
consideration; both cycles related to each other. It is required to improve the system to provide long
term solutions to react to failures in the “failure reacting cycle”, which leads to the

2010/12/01 Version 2.0a Page 21

© 2010 Japan Science and Technology Agency White Paper DEOS Project

“requirements/environment change accommodation cycle”. Besides, improvements to the system
through the “requirements/environment change accommodation cycle” become a potential cause of
future failure, which leads to the “failure reacting cycle”. These two cycles move forward
interacting with each other and in parallel throughout the lifecycle of one system. Figure 12 shows
how the elemental technologies developed in the DEOS project are used in the DEOS process.

 Requirements/Environment change accommodating cycle
 Partial improvements to the system are performed to accommodate change.

Verification of the modified part is done using Type/Model Checker which verifies the
software by mathematical methods, and the result is used as evidence of the correctness
of the software.

 The system with partial improvements is simulated by the large scale computing and
simulation capability of DS-Bench/D-Cloud, and the result is used as evidence that the
partial improvement does not cause faults.

 The improved part of the system is released for use.

 Failure reacting cycle
 Detection and analysis of failures is performed using D-Logger and D-Analyzer.
 Reactive action to the failure is performed using D-Visor and D-Effector.
 Reconfiguration of the system to react to the failure is performed.
 Log data of the failure is recorded in D-Box as an action of future failure prevention.

TestVerificationDesign

D-Case
growth cycle

DEOS Process

Requirement/Environment
Change accommodating cycle

Failure reacting cycle

Achievement of
accountability

D-Case

System change requests
based on stakeholders’

agreement

Implementation

Cause analysis

Responsive action

Failure prevention Anomaly detection/
Unexpected failure

happen

Stakeholders’
requirements/

System
environment
changes

Normal
operation

Anomaly detection
Analysis

Quick
Responsiveness

Evidence
management

Evidence by Unit test Evidence by
Integration test

D-Visor D-Box

D-Logger D-Analyzer

D-System
Monitor

D-Case
Editor

D-Effector

Type/Model
Checker

DS-Bench/
D-Cloud

D‐Case
Update

D-Case
Walker

DEOS Framework＆Tools

D‐Case
Execution

TestVerificationDesign

D-Case
growth cycle

DEOS Process

Requirement/Environment
Change accommodating cycle

Failure reacting cycle

Achievement of
accountability

D-Case

System change requests
based on stakeholders’

agreement

Implementation

Cause analysis

Responsive action

Failure prevention Anomaly detection/
Unexpected failure

happen

Stakeholders’
requirements/

System
environment
changes

Normal
operation

TestVerificationDesign

D-Case
growth cycle

DEOS Process

Requirement/Environment
Change accommodating cycle

Failure reacting cycle

Achievement of
accountability

D-Case

System change requests
based on stakeholders’

agreement

Implementation

Cause analysis

Responsive action

Failure prevention Anomaly detection/
Unexpected failure

happen

Stakeholders’
requirements/

System
environment
changes

Normal
operation

Anomaly detection
Analysis

Quick
Responsiveness

Evidence
management

Evidence by Unit test Evidence by
Integration test

D-Visor D-Box

D-Logger D-Analyzer

D-System
Monitor

D-Case
Editor

D-Effector

Type/Model
Checker

DS-Bench/
D-Cloud

D‐Case
Update

D-Case
Walker

DEOS Framework＆Tools

D‐Case
Execution

Fig. 12. Systems Development & Operation using DEOS Technologies

Throughout this process,
D-Case is used to get to
agreement from stakeholders by
describing the action to the
failure in open systems and the
improvement of the system, as
well as accurate records of
system behavior and appropriate
evidence. D-Case documents
are updated whenever a system
is changed with the
reconfiguration function or code
enhancements, and may be used
to explain to stakeholders the
latest dependability status of the
system at any time.

The elementary technologies

mentioned here will be described
in detail in Chapter 5.

4.4 Project Deliverables

The following are the expected deliverables of this project:

• Open systems dependability concept
• Elemental technologies（specification for each technology, API reference document, code,

implementation guidelines, etc）
• Process（process guidelines, etc）
• Framework, development environment and tools (system architecture specifications, API

reference document, code, implementation guidelines, etc）
• Metrics, standard guidelines and record format
• Open systems dependability consortium

Page 22 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

5 Major Research and Development Status

5.1 Framework

Objectives
D-fops, the Dependability Framework for Open Systems, is an integration of the elemental
technologies of the DEOS project (such as 5.2: Dependability Case and Stakeholder Agreement
Processes, 5.3: System monitoring and Evidence Analysis, 5.4: Security and 5.5: Virtualization and
its Application). D-fops implements the following functions:

Sy
st

em
 c

ha
ng

e
re

qu
es

ts
 b

as
ed

on

 s
ta

ke
ho

ld
er

s’
ag

re
em

en
t

D
es

ig
n/

Im
pl

em
en

ta
tio

n/

V
er

ifi
ca

tio
n/

Te
st

in
g

A
ch

ie
ve

m
en

t o
f a

cc
ou

nt
ab

ili
ty

Pr
ev

en
ta

bi
lit

y

R
es

po
ns

iv
e

ac
tio

n

C
au

se
 a

na
ly

si
s

N
or

m
al

 o
pe

ra
tio

n

Recording at the last minute before system goes down（system
recorder）

✔ ✔ ✔

Consistent timing system and protection against fake data（record box） ✔ ✔ ✔ ✔ ✔ ✔

System resource control and behavior control（quota） ✔ ✔
Fail safe mechanism for unknown failure ✔ ✔
Software aging prevention ✔ ✔

Testing with time-shift（time-shift rehearsal） ✔ ✔

Isolation, reconfiguration and restoration of failed part
（isolation/reconfiguration/removal）

 ✔

Subsystem removal and repair（migration） ✔

Strategies
D-fops is under development to achieve the objectives mentioned above. It is designed to support the
DEOS process (shown in 2.4). It consists of a set of system features to sustain the dependability of
services desired by stakeholders. It is primarily for embedded systems, but is also applicable to other
systems including computer systems for social infrastructure. The functions of each service
component of D-fops are described below.

D-Visor
This provides a mechanism for securely isolating two or more subsystems, each of which is run in
an isolated partition called a System Container. System Containers are independent from each
other, preventing anomaly/failure in one container from affecting the other containers.

D-Application Manager
This provides a mechanism for securely isolating two or more applications, each of which is run in
an isolated named space called an Application Container. In addition, it controls the lifecycle of
each application program (invoking, revising, and terminating the program) and provides a
mechanism for a system designer to develop a system which can monitor/analyze the behavior of
application programs and take appropriate action. It also provides a control API that allows
improvements in Open Systems Dependability. An application program which is implemented
carefully to improve dependability using the API is called a D-Aware Application. The
D-Application Manager provides basic monitoring services to other existing application programs,
so-called legacy applications, and enables appropriate action upon these applications to be taken.

2010/12/01 Version 2.0a Page 23

© 2010 Japan Science and Technology Agency White Paper DEOS Project

D-Logger/D-Analyzer/D-Effector
D-Logger monitors the behavior of applications. D-Analyzer analyzes the monitoring results.
D-Effector takes necessary action. D-Analyzer also has functions to select the data which is
necessary as evidence and to compress this data. D-Box and D-Analyzer cooperate with each other
to record evidence.

D-Case Walker
This takes action dictated by system action policies and the agreed-upon definition of
dependability described in D-Case, which will be discussed later in section 5.2, in order to improve
Open Systems Dependability.

D-System Monitor
This independently monitors the system behavior from outside the OS. It also ensures system
integrity by monitoring system failures and attacks from the outside.

D-Box
This records useful information such as D-Case, policy, and evidence useful to improve Open
Systems Dependability. It guards information integrity using access control, encryption, and
manipulation detection.

Deliverables

 System architecture specification
 API definition
 D-Analyzer, D-Case Walker, D-Logger and D-Box program codes, etc
 Implementation Guideline for Embedded systems, etc

Middleware

D-Application Manager

OS

D-Visor

D-Box

D-Logger D-Analyzer

D-System
Monitor

Applications

● D-Case
● Policy
● Evidence

D-Case Walker D-Effector

OS

Framework

System
Containers

Application
Containers

Tools

Middleware

D-Application Manager

OS

D-Visor

D-Box

D-Logger D-Analyzer

D-System
Monitor

Applications

● D-Case
● Policy
● Evidence

D-Case Walker D-Effector

OS

Framework

System
Containers

Application
Containers

Tools

Fig.13．Framework System Configuration

Page 24 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

5.2 Dependability Metrics and Stakeholders’ Agreement Processes

Sy
st

em
 c

ha
ng

e
re

qu
es

ts

ba
se

d

 o
n

st
ak

eh
ol

de
rs

’
ag

re
em

en
t

D
es

ig
n/

Im
pl

em
en

ta
tio

n/

V
er

ifi
ca

tio
n/

Te
st

in
g

A
ch

ie
ve

m
en

t o
f

ac
co

un
ta

bi
lit

y

Pr
ev

en
ta

bi
lit

y

R
es

po
ns

iv
e

ac
tio

n

C
au

se
 a

na
ly

si
s

N
or

m
al

 o
pe

ra
tio

n

Dependability evaluation metrics（metrics）

✔ ✔ ✔ ✔

Dependability consensus description, update and management
（dependability case management）

✔ ✔ ✔ ✔ ✔

Policy script and policy management

✔ ✔ ✔ ✔ ✔

Objectives
The diversity and changeability of open systems make it inherently challenging for stakeholders to
obtain agreements and assurances on the dependability of systems. Furthermore, in an open
environment, stakeholders must maintain the dependability of both the whole system and all
subsystems whose boundaries are ambiguous and dynamic. Meeting these challenges requires
support for the agreement-making process and evidence-based accountability for the correct
implementation of agreements. Also, a mechanism for sharing dependability information through
system interfaces is required, for various system relations, e.g., the inclusion relation of an
embedded system and embedded OS components and the correspondence relation of servers and
clients in network systems.
 To satisfy these requirements, first, we need a dependability modeling language for describing the
dependability requirements in a form understandable to diverse stakeholders. Second, we need a
dependability metrics as a base for mutual agreement among stakeholders. Third, a process should
be in place that ensures traceability between the dependability descriptions and actual system
behaviors. The process not only tracks the development phases of a system but also monitors the
system during operation, constantly checking that dependability requirements are being satisfied.
Furthermore, in open systems, information of dependability requirements must be shared among not
only stakeholders, but also among stakeholders and systems. Therefore, we need to develop a
translation mechanism from dependability requirements written in the modeling language into
codes readable by systems; interfaces for sharing dependability requirement information among
stakeholders and systems.
Thus, we propose the “D-Case method'' with the following goals. As explained later, a D-Case is an
assurance case for dependability.

1. D-Case Language, a dependability modeling language to facilitate dependability agreements
and evidence-based accountability and a translation mechanism from D-Case Language into
codes readable by systems

2. Dependability Metrics for open systems to evaluate and ascertain described and achieved
dependability.

3. D-Case Tools for D-Case document creation, consistency checking, verification, presentation
for agreements and accountability, maintenance, and interoperability with existing tools.

4. D-Case Process, system life-cycle processes that define and coordinate D-Case activities / tool
use, at each life-cycle phase, in relation to existing ones.

Strategies
For these goals, we set the following directions.

2010/12/01 Version 2.0a Page 25

© 2010 Japan Science and Technology Agency White Paper DEOS Project

1. D-Case language
We designed the D-Case Language, a dependability modeling language to describe agreements

among stakeholders on dependability and to explain how it is assured based on evidence. We
adopted as a starting point the Goal Structuring Notation (GSN) developed by Tim Kelly and his
colleagues at the University of York, one of two prominent graphical notations for arguments in
assurance cases. Arguments in GSN are structured as trees with a few kinds of nodes, including:
``goal'' nodes for claims that arguments are meant to substantiate, ``strategy'' nodes for reasoning
steps that decompose a goal into subgoals, and ``evidence'' nodes for references to direct evidence
that respective goals hold. D-Case Language extends GSN in several ways. For example, we add
``monitoring'' nodes to denote operation-phase evidence supplied by monitoring mechanisms as well
as evaluation functions based on dependability metrics. We call a document written in D-Case
Language a D-Case document.
 A novelty of D-Case is that in a D-Case document, we argue dependability of systems by precisely
following DEOS process. To achieve Open Systems Dependability, stakeholders must make
agreements on future systems changes, using their knowledge and wisdom to their best effort. To
that end, not only the information of the structure of the target system and the subsystems (i.e., a
model of a relation of the whole system and the subsystems), which is often used in safety cases, but
we also describe how the target system adheres to each phases of the DEOS process. In this way, we
need to establish a methodology for describing both the structure of systems and processes in a
uniform way. D-Case modeling language, as the language for dependability description must be
elaborated to satisfy this requirement.

2. Dependability Metrics
To express differing degrees of dependability requirements for systems with different purposes,

quantitative measures of dependability are necessary. It is also essential for meaningful
negotiations among stakeholders towards mutual agreements on dependability. So we develop
dependability metrics for the quantitative evaluation of systems dependability.
In the development phase, customers and developers may use the metrics to argue how much of a
weighted combination of dependability requirements can be realized at what cost, etc. In the
operation phase, operators coping with failures may be helped by real-time measurements of
dependability in devising recovery strategies etc.
D-Case documents are crucial in considering dependability metrics since it is they that clarify what
to measure and what measured values mean to stakeholders. Weights can be assigned to goals and
measurements on them can be integrated into a quantitative evaluation depending on how each goal
is supported by sub goals and evidence. The live link between D-Cases and systems, explained
below, enables timely evaluation on live systems based on operation-phase evidence.

3. D-Case Tools
The following are being developed: D-Case Editor to edit/verify D-Case documents, D-Case Viewer

to display/monitor dynamically changing live D-Cases for systems at the operation phase, and a
Dependability Metrics Visualization Tool to provide visual, quantitative evaluation functions for
D-Case Editor and Viewer.

4. D-Case Process

We provide D-Case process for dependability agreements and assurance based on evidence. In the
DEOS process, according to system failure and requirements and environment changes, D-Case
documents are updated, and gradually corrected and refined. We call the process for maintaining
D-Case documents as the D-Case process. Also, to facilitate writing D-Case documents, we design
D-Case patterns for each system domain.

A case of using these tools is as follows. At each phase of a system life cycle, D-Case Editor is used
to record as D-Case documents, explain, and verify various negotiations and agreements among
stakeholders on dependability. Agreements are made according to the D-Case Process for that
phase, and, in the process, evaluation scores are given by Dependability Metrics Visualization Tool
to provide an objective basis for negotiation. At the operation phase, the D-Case is relayed to the
D-Case Viewer. Dynamic display/monitoring of D-Case together with runtime evidence and D-fops
Page 26 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

action from systems/environments helps operators/maintainers/users to recover from and improve
upon unexpected failures. D-Cases need to change as all systems change during their lifetime due
to changing stakeholder requirements, reconfiguration, etc. D-Case methodology aims to contribute
to Open System Dependability by managing/maintaining stakeholder agreements, evidence-based
assurances, and accountability in a synchronized manner with changes in live systems/environments
(Fig. 14).

Fig. 14. D-Case Process

Deliverables

 D-Case modeling language specification
 Dependability metrics
 D-Case Tools：D-Case Editor、D-Case Verifier、D-Case Viewer、and Dependability Metrics

Visualization Tool.
 D-Case process

 D-Case Pattern

5.3 System Monitoring and Evidence Analysis

Sy
st

em
 c

ha
ng

e
re

qu
es

ts
 b

as
ed

on
 s

ta
ke

ho
ld

er
s’

ag
re

em
en

t

D
es

ig
n/

Im
pl

em
en

ta
tio

n/

V
er

ifi
ca

tio
n/

Te
st

in
g

A
ch

ie
ve

m
en

t o
f a

cc
ou

nt
ab

ili
ty

Pr
ev

en
ta

bi
lit

y

R
es

po
ns

iv
e

ac
tio

n

C
au

se
 a

na
ly

si
s

N
or

m
al

 o
pe

ra
tio

n

System monitoring and logging
（monitoring & logging）

✔

✔

✔

✔

✔

✔

M
on

ito
ri

ng
 &

A

na
ly

zi
ng

Event analysis and verification
（incident analysis）

✔

✔

✔

✔

✔

✔

2010/12/01 Version 2.0a Page 27

© 2010 Japan Science and Technology Agency White Paper DEOS Project

Predictive detection（failure
prediction）

✔

Cause analysis

✔

✔

✔

✔

✔

✔

Objectives
Computer systems have always faced a variety of changes. Some of the changes will be the cause of
unexpected failure. We focus primarily on system monitoring and log analysis for tracking changes
occurring in the operation phase. The system monitored changes are recorded and logged to support
a variety of types of dependability management, such as analyzing the logged events for evaluation,
proactive failure prediction, and root cause analysis, which constitutes a main part the foundation of
open systems dependability.

Fig．15. Conceptual Overview of System Monitoring and Log Analysis

Figure 15 depicts an overview of our concept model. A log is recorded at various levels of systems,
such as communication system, operating system, language runtime, and VMM (Virtual Machine
Monitor). These logs are analyzed and stored as evidence for indicating the actual behavior of
systems at failure, and for root cause analysis. We have investigated and developed D-Logger and
D-Analyzer working on D-fops, and will provide them as online log analysis mechanisms. The
evidence evaluation based on log analysis will be used for the prediction of failures and for root cause
analysis. We will provide a tool for giving a view for D-Analyzers that will be the part of the root
cause analysis for engineers.

 Our ultimate goal is to deliver accountability by conducting risk assessments that are based on the
evidence for making profiling of a log of the current state of a system, and will support providing
procedures including failure avoidance and executing accountability and daily checking and
improvement and root cause analysis for failures for achieving open system dependability.
We will take a twofold approach for achieving these purposes.

(1) Evidence Management

Page 28 Version 2.0a

A variety of logging records come from operating systems, communication nodes and individual
application programs. Each of these records can be evidence for a certain aspect of the whole. The
integration of these logs is needed and would be useful for root cause analysis, failure avoidance,

2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

executing accountability and quick action for failures. This would help in failure recovery and
continuous improvement. We address this problem with a newly defined model of evidence
management, and developed for open systems dependability.

(2) Accountable Logging and Analysis
Logging and analysis has been widely used in computer systems. However, usually in those systems,
a very small fraction of internal status information is recorded, and this is not necessarily sufficient
for assuring the verification of the correctness of system behavior. Thus, we have developed a new
logging method that is to collecting evidence for accountability.

Strategies
We have addressed the creation of accountability logging, analysis and evidence management with
the following research direction strategies.

(1) Accountable Real-time Operating System.
As the complexity of real-time systems increase, the model-theoretic and predictable design of a
theoretical model of real-time tasks for real-time prediction purposes becomes impractical and
difficult. We only model to determine in real-time the correctness of the execution of real-time tasks
that can be inspected based on log analysis of available logged data. This research direction includes
the need to deal with the overhead problem of real-time logging and the implementation issues of
real-time on the Linux model.

(2) Accountable Programming Language.
We have focused on constructing a function for the automated generation of application logging that
allows us to inspect and evaluate the correctness of programs. The correctness of programs is judged
based on the specifications of goal-oriented software requirements, and this judgment is entered as
an annotation in the source code. Runtime errors are inspected through stack analysis and the
analysis of other internal information. To implement these ideas, we have extended our
implemented scripting language, named Konoha, in terms of both the language grammar and its
scripting engine.

(3) Traceability of Log Analysis Chain D-Analyzer
Anomaly detection is a crucial part of the evidence evaluation process. That is, anomalies refer to
unspecified incorrect behavior, whereas some levels of correctness are specified in the accountable
logging commitment. Rather than the anomaly specification, researchers apply modeling techniques
that enable them to detect anomalies in accordance with changing situations in open systems.

Evidence consists of multiple independently observed events, and the time and place of these events
must be traceable in terms of the time and place of their occurrence to verify, and the validness of the
log analysis. We address the traceability problem by organizing a variety of loggers and an analyzer,
using domain-specific language-based management.

(4) Stream Evidence Engine (SEE)
D-Analyzers are connected with a traceable log analysis engine named the Stream Evidence Engine
(SEE) that includes a domain specific language for evidence analysis, and a streaming evidence
analysis engine. D-Analyzer can use the integrated interfaces of streams through SEE. SEE will also
provide the load-balancing mechanism to distribute its load of analyzing, and it sends the results for
the evidence server through their interfaces.

(5) Evidence Viewer Model
The collected logs for use of evidence range from accountability establishment (i.e., root cause
analysis) to policy change (i.e., risk analysis). A unified dependency viewer is needed to improve the
usability of observed events as evidence. This research must include the visualization of this unified
model for a human operator and the system integration of automated management into D-fops. In
particular, we will present an online fault analysis viewer that views various aspects of system

2010/12/01 Version 2.0a Page 29

© 2010 Japan Science and Technology Agency White Paper DEOS Project

behavior in terms of dependable risk analysis (a FTA extension), and event traceability (root cause
analysis).

Case Study in Robotics
As a case study of a highly advanced embedded system, we are planning to apply our developed
techniques to robots that have been developed at AIST (National Institute of Advanced Industrial
Science and Technology).

Deliverables
Our final deliverables are planned to be as follows:

 Multi-OS architecture; supports a real-time logging mechanism for inspecting that verifies the
correctness of real-time task execution in real time.

 Accountable Konoha language, a newly designed dependable scripting language that supports a
static type checker and automated logging for inspection verification of the correctness of
scripted programs.

 D-Logger; collects various types of logs from the various layers in the system.
 D-Analyzer; provide the various type of analysis for the log, such as a model-based anomaly

detector and proactive performance anomaly detector that support the detection of anomalies from
their logs with novel approaches.

 Evidence Viewer; evidence management viewer that views various aspects of system behavior
in terms of agreed-upon dependability agreements (D-Case), risk analysis (a FTA extension),
and event traceability (cause analysis).

 Knowledge Data for Robotics failures.

5.4 Security

Sy
st

em
 C

ha
ng

e
R

eq
ue

st
s

ba
se

d
on

 S
ta

ke
ho

ld
er

s’
A

gr
ee

m
en

t

D
es

ig
n,

 Im
pl

em
en

ta
tio

n,

V
er

ifi
ca

tio
n,

 T
es

tin
g

A
ch

ie
ve

m
en

t o
f A

cc
ou

nt
ab

ili
ty

Fa
ilu

re
 P

re
ve

nt
io

n

R
es

po
ns

iv
e

A
ct

io
n

C
au

se
 A

na
ly

si
s

N
or

m
al

 O
pe

ra
tio

n

Technology to defend attacks from
networked nodes (Security)

 ✔ ✔ ✔

Objectives
To improve open system dependability, a security mechanism is mandatory to defend against
various security threats. We provide a secure execution mechanism for operating systems; it
guarantees that the security mechanism of the operating system is working correctly. It monitors the
runtime behavior of the operating systems and guarantees it is working as it is expected.

The hijacking of operating systems is one of the most serious threats to computer security. This is
because none of the security mechanisms can be trusted if the operating system, which plays the role

Page 30 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

of trusted computing base, is hijacked and functions in an unexpected way. We provide a secure
execution environment for operating systems by defending against attempts to hijack operating
systems.

of trusted computing base, is hijacked and functions in an unexpected way. We provide a secure
execution environment for operating systems by defending against attempts to hijack operating
systems.

In open systems, security
mechanisms such as
authentication, authorization,
and access control should evolve
as the demands of applications
change. Actually, these
fundamental security
mechanisms are still hot topics
of security research. In this
project, we allow the use of new
operating systems equipped
with advanced security
mechanisms, and guarantee
that the operating systems are
working in the expected way by
running them in a secure
environment.

In open systems, security
mechanisms such as
authentication, authorization,
and access control should evolve
as the demands of applications
change. Actually, these
fundamental security
mechanisms are still hot topics
of security research. In this
project, we allow the use of new
operating systems equipped
with advanced security
mechanisms, and guarantee
that the operating systems are
working in the expected way by
running them in a secure
environment.

Strategies Strategies
To implement the above goals,
we use virtual machine
technologies. More concretely,
we prepare at least two virtual
machines, one for executing a monitored operating system and the other for executing a monitoring
operating system. The monitoring operating system monitors the behavior of the monitored
operating system, checks the validity of the behavior, and raises an alert when the operating system
behavior is deviant. (See Figure 16).

To implement the above goals,
we use virtual machine
technologies. More concretely,
we prepare at least two virtual
machines, one for executing a monitored operating system and the other for executing a monitoring
operating system. The monitoring operating system monitors the behavior of the monitored
operating system, checks the validity of the behavior, and raises an alert when the operating system
behavior is deviant. (See Figure 16).

Fig. 16. Monitoring OS behavior using VMM

The monitoring operating system can inspect various types of behavior of the monitored operating
system. For example, access to privileged registers, execution of privileged instructions, and I/O
operations can be reliably inspected because the monitored operating system cannot fake these
behaviors. Furthermore, the underlying VMM can inject hardware/software traps into the system.
Through this trap injection and observation, it can be verified whether the monitored operating
system is functioning as expected (See Figure 16). We also provide the rigorous isolation of virtual
machines that can avoid denial-of-service attacks.

The monitoring operating system can inspect various types of behavior of the monitored operating
system. For example, access to privileged registers, execution of privileged instructions, and I/O
operations can be reliably inspected because the monitored operating system cannot fake these
behaviors. Furthermore, the underlying VMM can inject hardware/software traps into the system.
Through this trap injection and observation, it can be verified whether the monitored operating
system is functioning as expected (See Figure 16). We also provide the rigorous isolation of virtual
machines that can avoid denial-of-service attacks.

Our design has several advantages over the traditional signature-based detection and prevention of
malware infection. Traditionally, a signature must be developed for each malware sample. In
contrast, for our monitoring system we have only to develop a monitoring module for each class of
malware. For example, to defend against the class of malware that tries to hide the existence of
malicious files, we simply provide a monitoring module that matches the list of file names obtained
from I/O operations with that obtained from the system call results; one module can detect all
samples belonging to the same class of malware. To deal with a new class of malware, we have to
develop a monitoring module for that class, but the monitoring operating system is carefully
designed to facilitate the development of such modules.

Our design has several advantages over the traditional signature-based detection and prevention of
malware infection. Traditionally, a signature must be developed for each malware sample. In
contrast, for our monitoring system we have only to develop a monitoring module for each class of
malware. For example, to defend against the class of malware that tries to hide the existence of
malicious files, we simply provide a monitoring module that matches the list of file names obtained
from I/O operations with that obtained from the system call results; one module can detect all
samples belonging to the same class of malware. To deal with a new class of malware, we have to
develop a monitoring module for that class, but the monitoring operating system is carefully
designed to facilitate the development of such modules.

To develop monitoring modules, intimate knowledge about malware is necessary. Modern malware
is quite difficult to analyze because they are tactically ciphered and obfuscated. Even if we use a
debugger to analyze malware, the malware stops its execution when it detects the existence of the
debugger. In this project, we have also developed a suite of malware analysis tools; currently, we are
developing a behavior analysis tool for malware that makes use of symbolic execution.

To develop monitoring modules, intimate knowledge about malware is necessary. Modern malware
is quite difficult to analyze because they are tactically ciphered and obfuscated. Even if we use a
debugger to analyze malware, the malware stops its execution when it detects the existence of the
debugger. In this project, we have also developed a suite of malware analysis tools; currently, we are
developing a behavior analysis tool for malware that makes use of symbolic execution.

2010/12/01 Version 2.0a Page 31

© 2010 Japan Science and Technology Agency White Paper DEOS Project

Deliverables

 D-System Monitor module to monitor OS behavior
 Virtual Machine Security Architecture
 Support tool for analyzing malware behavior

5.5 Virtualization and its Application

Sy
st

em
 C

ha
ng

e
R

eq
ue

st
s

ba
se

d
on

 S
ta

ke
ho

ld
er

s’
A

gr
ee

m
en

t

D
es

ig
n,

 Im
pl

em
en

ta
tio

n,

V
er

ifi
ca

tio
n,

 T
es

tin
g

A
ch

ie
ve

m
en

t o
f A

cc
ou

nt
ab

ili
ty

Fa
ilu

re
 P

re
ve

nt
io

n

R
es

po
ns

iv
e

A
ct

io
n

C
au

se
 A

na
ly

si
s

N
or

m
al

 O
pe

ra
tio

n

Technology to monitor and log
various events that occur in systems
(Monitor & Logging)

 ✔ ✔

Technology to identify and extract
causes (Cause Analysis)

 ✔ ✔ ✔

Technology to maintain memory
resources in clean condition
(Software Anti-aging)

 ✔ ✔

Technology to defend attacks from
networked nodes (Security)

 ✔ ✔ ✔

Technology to realize System
Containers (Isolation)

 ✔ ✔ ✔

Technology to make virtualization
layers reliable (Verification of
Virtualization Layer)

 ✔

Objectives
The D-System Monitor aims to contribute to Open Systems Dependability by employing
virtualization technologies, and D-Visor provides the virtualization technologies that D-System
Monitor requires. D-System Monitor and D-Visor are parts of the D-fops (Framework), and they
work together with the other components that constitute D-fops. D-System Monitor realizes
technologies such as Monitor & Logging, Cause Analysis, and Security, as its elemental technology.
D-Visor also realizes Software Anti-aging and Isolation technologies. D-System Monitor and D-Visor
constitute the basis of the security architecture described in Section 5.4.

Strategies

Page 32 Version 2.0a

D-fops (Framework) is based on virtualization technologies, and its functionalities rely on services
constructed on a virtualization layer outside of an OS. D-System Monitor and D-Visor are a
monitoring service and a virtualization layer of D-fops, respectively. Their details are described
below.

2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

The objective of D-System Monitor is to realize Monitor & Logging, Cause Analysis, and Security.
In order to achieve its objective, D-System Monitor continuously monitors the behavior and internal
data structures of an OS from the outside. And then, D-System Monitor analyzes the monitored data
in order to guarantee the OS is operating in the expected way.

The objective of D-System Monitor is to realize Monitor & Logging, Cause Analysis, and Security.
In order to achieve its objective, D-System Monitor continuously monitors the behavior and internal
data structures of an OS from the outside. And then, D-System Monitor analyzes the monitored data
in order to guarantee the OS is operating in the expected way.

D-Visor realizes the Isolation
mechanism and implements System
Containers in order to enable
D-System Monitor to safely monitor an
OS from the outside. By executing an
OS in a System Container realized by
the Isolation mechanism of D-Visor,
the execution environment of
D-System Monitor can be clearly
separated from the environment of the
monitored OS (see Fig. 17).

D-Visor realizes the Isolation
mechanism and implements System
Containers in order to enable
D-System Monitor to safely monitor an
OS from the outside. By executing an
OS in a System Container realized by
the Isolation mechanism of D-Visor,
the execution environment of
D-System Monitor can be clearly
separated from the environment of the
monitored OS (see Fig. 17).

D-System Monitor guarantees the
monitored OS is operating in the
expected way by analyzing its runtime
information provided by D-Visor.
D-Visor provides the runtime
information, such as access to privileged registers, execution of privileged instructions, and I/O
processing and data, for the D-System Monitor. Moreover, D-Visor can monitor the reactions of the
monitored OS to more specific events by injecting external interrupts and software interrupts that
invoke system calls. From the monitored behavior, D-System Monitor can determine whether the
monitored OS behaves as expected. D-Visor also provides Software Anti-aging mechanism that
quickly and simply recovers data integrity in a monitored OS.

D-System Monitor guarantees the
monitored OS is operating in the
expected way by analyzing its runtime
information provided by D-Visor.
D-Visor provides the runtime
information, such as access to privileged registers, execution of privileged instructions, and I/O
processing and data, for the D-System Monitor. Moreover, D-Visor can monitor the reactions of the
monitored OS to more specific events by injecting external interrupts and software interrupts that
invoke system calls. From the monitored behavior, D-System Monitor can determine whether the
monitored OS behaves as expected. D-Visor also provides Software Anti-aging mechanism that
quickly and simply recovers data integrity in a monitored OS.

Fig 17. Dependability Support by D-System Monitor
on an isolated environment realized by D-Visor

D-Visor should not cause failures since it is introduced into the system in order to achieve
Sustainability, which is the essential objective of Open Systems Dependability. Thus, D-Visor cannot
be compromised either since it is the base of the system that enables the monitoring of an OS from
the outside of it. Therefore, the implementation of D-Visor is verified by the model checker, which is
being researched and developed by this project. The verification effort of D-Visor aims to provide a
specification description to avoid fatal errors that lead to the service outage of System Containers.

D-Visor should not cause failures since it is introduced into the system in order to achieve
Sustainability, which is the essential objective of Open Systems Dependability. Thus, D-Visor cannot
be compromised either since it is the base of the system that enables the monitoring of an OS from
the outside of it. Therefore, the implementation of D-Visor is verified by the model checker, which is
being researched and developed by this project. The verification effort of D-Visor aims to provide a
specification description to avoid fatal errors that lead to the service outage of System Containers.

It is very difficult that a single implementation of D-Visor fulfills all the requirements for every kind
of embedded systems. Since embedded systems are used for a wide variety of purposes in a number
of ways, their utilization environments differ substantially. Low power consumption can be a very
high priority requirement for some systems while real-timeliness can be the highest priority
requirement for some other systems. There are also many kinds and configurations of embedded
processors used in target systems. Therefore, it is better to provide different implementations of
D-Visor that match the needs of target embedded systems. While D-System Monitor utilizes System
Containers, it requires different functions for System Containers depending upon the functionalities
it realizes. Thus, a metric is being developed to help users construct systems that best fit their needs.

It is very difficult that a single implementation of D-Visor fulfills all the requirements for every kind
of embedded systems. Since embedded systems are used for a wide variety of purposes in a number
of ways, their utilization environments differ substantially. Low power consumption can be a very
high priority requirement for some systems while real-timeliness can be the highest priority
requirement for some other systems. There are also many kinds and configurations of embedded
processors used in target systems. Therefore, it is better to provide different implementations of
D-Visor that match the needs of target embedded systems. While D-System Monitor utilizes System
Containers, it requires different functions for System Containers depending upon the functionalities
it realizes. Thus, a metric is being developed to help users construct systems that best fit their needs.

Deliverables Deliverables

 D-System Monitor modules D-System Monitor modules
 Software module to monitor OS internal data structures Software module to monitor OS internal data structures
 Software module to monitor OS behavior Software module to monitor OS behavior

 D-System Monitor runtime API D-System Monitor runtime API
 D-Visor for embedded systems D-Visor for embedded systems
 D-Visor for hard real-time systems D-Visor for hard real-time systems
 Verification specification description for D-Visor Verification specification description for D-Visor

2010/12/01 Version 2.0a Page 33

© 2010 Japan Science and Technology Agency White Paper DEOS Project

5.6 Systems Software Verification

Sy
st

em
 C

ha
ng

e
R

eq
ue

st
s

ba
se

d
on

 S
ta

ke
ho

ld
er

s’
A

gr
ee

m
en

t

D
es

ig
n,

 Im
pl

em
en

ta
tio

n,

V
er

ifi
ca

tio
n,

 T
es

tin
g

A
ch

ie
ve

m
en

t o
f A

cc
ou

nt
ab

ili
ty

Fa
ilu

re
 P

re
ve

nt
io

n

R
es

po
ns

iv
e

A
ct

io
n

C
au

se
 A

na
ly

si
s

N
or

m
al

 O
pe

ra
tio

n

Technology for Model Checking of
Systems Software

 ✔ ✔

Technology for Type Checking of
Systems Software

 ✔ ✔

Objectives
When features are added or modified in existing systems, new bugs must not be introduced. One of
the objectives of this project is to develop formal program development approaches and tools for
detecting defects in systems software including operating system kernels, thereby contributing to
the achievement of Open Systems Dependability, especially for the “Design, Implementation,
Verification, and Testing” phase of the DEOS process. In addition, the approaches and tools support
the “Fault Prevention” phase in the sense that the tools can detect bugs in programs before executing
them.

Strategies
In order to achieve the objectives mentioned above, this project has been researching and developing
two formal methods, model checking and type checking, for the formal verification of C programs
which are frequently used for systems software (Figure 18 and Figure 19) in the “Design,
Implementation, Verification, and Testing” phase. In the DEOS process, verification tools are used
not only in the development phase of a software system, but also in the maintenance phase where a
system continuously evolves in order to improve Open Systems Dependability.

From the viewpoint of achieving Open Systems Dependability, both of the methods have drawbacks
and advantages. Model checking can verify relatively complex safety properties. However, this takes
a long time. On the other hand, type checking can be done in a short amount of time. However it can
verify relatively simple safety properties. To address this problem, we combine the two methods in a
complementary manner.

Model checking is a method of reading C programs, exploring all execution paths, and checking
whether developer-specified properties (conditions) are satisfied or not. These properties are written
in a specification language as conditions on the variables of the programs. Because the properties
can be modified or added, measures to prevent a certain Open Systems Failure, which is caused by
changes in the external environment or in user demands, can be subjected to model checking by
adding conditions of failure to the properties to be checked.

Page 34 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

While properties checked by model checking can be written by programmers, it is unclear what
properties should be written and how. To make it clear, we provide a specification description to
extend the Linux kernel safely by defining the constraints on functions and variables.

Type checking is a method for checking and ensuring that a program never performs illegal
operations. For example, it ensures that the program never accesses outside of arrays or jumps to
illegal addresses. First, programs written in C are compiled into a Typed Assembly Language (TAL),
which is a type-safe assembly language with the type information of programs. During this
compilation, runtime checking codes are inserted where type-safety properties cannot be guaranteed
statically. Then the generated TAL codes are assembled into binary executable forms, which also
have the type information. Thus the type-safety properties of the generated binary executable forms
can also be checked. This makes it possible to ensure the simple safety properties of programs
continuously even when a system needs to be modified because of changes in external environment
or user demands.

Deliverables

 Model checker for systems software written in C
 Specification description language for systems software
 Specification descriptions for Linux kernel extensions
 Typed Assembly Language (TAL) for systems software and type checker
 Type-safe compiler from C to TAL

Fig. 18.

2010/12/01 Version 2.0a Page 35

© 2010 Japan Science and Technology Agency White Paper DEOS Project

Fig. 19.

5.7 Dependability Measurement Tools and Test Tools

Sy
st

em
 C

ha
ng

e
R

eq
ue

st
s

ba
se

d
on

 S
ta

ke
ho

ld
er

s’
A

t
D

es
ig

n,
 Im

pl
em

en
ta

tio
n,

V

er
ifi

ca
tio

n,
 T

es
tin

g

A
ch

ie
ve

m
en

t o
f

A
cc

ou
nt

ab
ili

ty

Fa
ilu

re
 P

re
ve

nt
io

n

R
es

po
ns

iv
e

A
ct

io
n

C
au

se
 A

na
ly

si
s

N
or

m
al

 O
pe

ra
tio

n

Observation of Load, Anomaly
Condition, and Behavior

 ✔ ✔ ✔ ✔

Acceleration of the System Test by
Managing Massive Computing
Resources

 ✔ ✔ ✔ ✔

Objectives
In the D-Case process, anticipated anomaly conditions are enumerated, and evidence is needed to
show whether the system requirements are satisfied under each anomaly condition. The limit of the
system against these anomaly conditions must be calculated beforehand by necessary quantitative
measurements. In addition, in the case of system updates, it must be verified that no problems arise
with a system operation test. The cause of anomalies observed in actual operation must be analyzed
in order to ensure accountability to stakeholders. One of the objectives of this project is to develop
tools for measuring dependability and for rapid system testing, which will contribute to achieving
Open Systems Dependability.

Page 36 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

Anomalies include hardware faults, software bugs, overload, and human error. A common evaluation
environment in which various anomaly loads can be evaluated must be implemented systematically.
In order to observe anomaly conditions or evaluate system operation, a tremendous number of
system tests must be carried out. This can only be done by automating the test process and
managing computing resources appropriately. Complex testing using many test patterns must be
accelerated.

Strategies
The DBench project was an approach to evaluate the dependability of the system carried out from
the late 1990s to the early 2000s. The dependability benchmark framework, which is a conceptual
framework, was developed in the DBench project. In this framework, the benchmark environment
consisted of a Benchmark Target, Workload, Faultload, and Measurement. In the DBench project, a
separate benchmark environment for each specific application domain was implemented based on
the defined framework.

On the contrary, in our project, DS-Bench/D-Cloud have been designed and implemented to provide a
dependability evaluation environment with adaptability and extensibility. DS-Bench/D-Cloud can be
commonly used for various application areas. Our project partially shares the goals of the DBench
project. However, we aim for the benchmarks to be reused, unlike DBench, and we also aim to make
a database of benchmark programs and to make scripts specifying how to execute the benchmarking
based on a fault scenario.
Anomaly behavior caused by software problems, such as software bugs and overload, and hardware
malfunctions that can be caused by controlling hardware devices, such as network disconnection and
power shutdown, are simulated using real machines. If the specifications of a device are written in
the SpecC system description language, hardware faults can be simulated by the combination of the
SpecC simulator and Virtual Machine Monitor on D-Cloud.
Based on the framework of DS-Bench, the fault scenario that describes when to generate faults at
what workloads, and with which measurement tools is described in XML. This fault scenario is
reflected in the scenario for setup and execution of the D-Cloud testing environment, which is also
described in XML, and it is executed in virtual machines and real machines.
The results of the execution based on a fault scenario are also generated in XML format, and are
stored in a database. This database provides evidence of how the system responds to overload or
faults.

Deliverables
Figure 17 schematically illustrates the DS-Bench and D-Cloud we aim to create. Their overall
features are as follows.

 DS-Bench/D-Cloud Front end：
This provides a Web user interface for users to configure the fault scenario.
Through this interface, many types of software dealing with Anomaly Loads, Performance
Benchmarks, Monitoring Tools, and Anomaly Scripts are entered in the database. Users can use
this interface to configure the dependability benchmark environment. Our project will provide
the deliverables shown below. In addition, users can flexibly append a group of software as
necessary.

 Anomaly Loads：Anomaly Loads are classified into two types: fault emulators for software,
and fault emulators for hardware. The fault emulators for software consist of programs that
artificially generate overloads of the CPU, disk I/O, network traffic, and heavy memory
usage. The fault emulators for hardware control the commodity PDU (power strip) to
emulate power shutdown faults and the network switch to emulate network disconnection
faults. To deal with faults in memory flip and I/O devices, etc., an environment with these
can be simulated on Virtual Machines. I/O devices that are not used in general-purpose
computers must be described in the SpecC system description language.

2010/12/01 Version 2.0a Page 37

© 2010 Japan Science and Technology Agency White Paper DEOS Project

 Performance Benchmarks：These are programs that evaluate whether the required
performance is sustained under anomaly loads. Benchmark programs that are used
to evaluate commonly used products are available.

 Monitoring Tools：These are tools to monitor the states of the computer.
 Anomaly Scripts：These are fault scenario databases defined by users, and some examples

may be provided.
 D-Cloud and Fault-VM：

The environment for executing the dependability benchmark is provided by D-Cloud and
Fault-VM. Benchmarks that are executable with Virtual Machine and benchmark environment
without special hardware are performed in the cloud computing environment offered by cloud
management software (currently, Eucalyptus), including I/O device models described in the
SpecC language. If the target system consists of real machines or requires a special environment,
the real environment is directly used. D-Cloud assigns the programs based on Anomaly Scripts
to specific Virtual Machines or real machines.

Tester

VM/QEMU Nodes
Booting Guest OS

Fault Injection

Eucalyptus
Cloud Environment

D-Cloud

Frontend

Anomaly
Generator

Benchmark Database

Target Machines
Network Switch
(Network Port is
controlled via SNMP）

PDU
（Power is controlled
via HTTP,SNMP）

Controller for Target
Specific Environment

Target Hardware
Specific Environment

Controller for VM/QEMU
Nodes

D-Cloud Controller

ToolMeasurement
Tool

Benchmark
Results

Benchmark
Performance
Benchmark

Anomaly
Script

Fig.20. Image of DS-Bench/ D-Cloud as a goal

5.8 Process and International Standards

Objectives
Our goal is to develop a dependability standard for information systems that provides objective
criteria with which developers can argue for, and users can be convinced of, the dependability of a
system. We also establish a certification scheme based on these criteria, assessing a system's
conformity to the standard. The certification of DEOS will make its value clear, and will itself be a
tangible added value of the whole system. We intend the standard to be internationally recognized.
We plan to set up study groups within the international standards bodies in which we participate, to

Page 38 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

promote international collaboration in this area, and to submit a standard proposal together with
international partners.

Strategies
The research and development being conducted has the following focuses:

1. Formation of the “User Oriented Dependability” concept
2. Drafting dependability standards
3. Establishing an evaluation methodology
4. Establishing lifecycle technology

Item 1 clarifies the concepts of indeterminacy and diversity that have become issues in Open
System Dependability, and explores solutions to the challenge of developing "measures against
unexpected failures," seemingly a contradiction in terms. Item 2 formulates the qualities required
of dependable information systems, based on the open system dependability concepts clarified in
Item 1. Item 3 provides methods to evaluate a system's conformity to the standard. Item 4
gives guidelines on how to design a system lifecycle for continuing conformity to the standard.

Details of activities and progress with regard to each research focus are as follows.

2Drafting Dependability Standards
Open System ⇒ International Standards

Evaluation Standards for Open System Dependability
Defining Dependability Levels

Systems are emergent;
change like organisms

Standardisation activities
ISO/IEC JTC1/SC7/WG7
IEC TC56/WG4
OIML
OMG1 Formation of

“User Oriented Dependability”
Concept

Related existing Standards
IEC 603000s, 61713
ISO/IEC 15288, 12207
ISO/IEC 15026:1998
IEC 61508 etc.

Requirements elicitation
/ analysis / specification

Risk Management
Risk Communication

Stakeholders share responsibility;
No unlimited liability borne by developers

3Establishing Evaluation Methodology

Provision of guidelines for evaluating
conformity to the standard
at each phase of a system life cycle

4Establishing Life Cycle Technology

Provision of guidelines for developers,
operators, and maintainers on their tasks at
each life cycle phase

Use case 1
D-Case tools support
conformity management
by making specifications

Formal verification etc. is
an advisable option.

Design

Implemen-
tation

Testing

Operation

Mainte-
nance

Deployment

Conformity assessment w.r.t. the standard and guidelines

Use case 2
Real-time monitoring and verification that performance, operational
policy, etc. are as planned in the pre-operational agreement among
stakeholders.

Producing evidences that maintenance is carried out
in accordance with the agreed policies

Requirements
definition

Design

Implemen-
tation

Testing

Operation

Mainte-
nance

Deployment

D-Case tools for construction and
verification of assurance cases

Life cycle technology guidelines Life cycle technology guidelines

Requirements
definition

Fig. 21. International Standard and Process Development Approach

Formation of “User Oriented Dependability” concept
Through reviews of existing dependability concepts, discussions among Open System
Dependability groups, and external feedback to the results of the above, we came to identify crisis

2010/12/01 Version 2.0a Page 39

© 2010 Japan Science and Technology Agency White Paper DEOS Project

management for information systems as a key concept in addition to risk management. Since
conventional risk management starts by enumerating risks, it may only counter risks perceived in
advance. The achievement of Open System Dependability, on the other hand, starts by
recognising the necessity to cope with unexpected failures, which is more akin to crisis
management in society at large. The means of crisis management include emergency procedures,
accountability, and recurrence prevention.

Drafting dependability standards
We are active in the working groups of international standards bodies such as ISO/IEC
JTC1/SC7/WG7 (Software and system engineering - Lifecycle management) and IEC TC56/WG4
(Dependability - System aspects of dependability) as members, editors, or experts, cultivating
collaborations to form the world community for the formation of new dependability standard
proposals. In particular, since 2009, we have been acting as co-editors of the draft international
standards ISO/IEC 15026 for assurance cases.

Establishing evaluation methodology
Agreement among diverse stakeholders in a system will become an ever more important issue for
crisis management and risk management. It is necessary to have systematic support for
reaching complex agreements, for checking correctness of agreement procedures, etc. A tool to
construct D-case documents and verify their consistency is being developed.

Establishing lifecycle technology
For Open System Dependability, it is important for agreement among stakeholders to be
appropriately maintained throughout system lifecycles. The D-Case management process to
attain this is being developed.

Deliverables

 Publication of concept definitions: establishing Open System Dependability concepts.
 ISO/IEC international standards: draft standards for Open System Dependability, starting

the process towards formal approval by ISO/IEC.
 OMG industry standards: proposals for D-Case standards with industry-wide

interoperability made at OMG meetings.

5.9 Research and Development Activity Results

Middleware

D-Application Manager

OS

D-Visor

D-Box

D-Logger D-Analyzer

D-System
Monitor

Applications

● D-Case
● Policy
● Evidence

D-Case Walker D-Effector

OS

Framework

System
Containers

Application
Containers

DS-Bench

Type
Checker

Model
Checker

D-Cloud

D-Case
Editor/Viewer

Open FTA
Viewer

Virtualization
＆Multi-OS

Monitor
& Analyzer

System
Monitor
& Security

D-Case
ART-Linux

Tools

Middleware

D-Application Manager

OS

D-Visor

D-Box

D-Logger D-Analyzer

D-System
Monitor

Applications

● D-Case
● Policy
● Evidence

D-Case Walker D-Effector

OS

Framework

System
Containers

Application
Containers

DS-Bench

Type
Checker

Model
Checker

D-Cloud

D-Case
Editor/Viewer

Open FTA
Viewer

Virtualization
＆Multi-OS

Monitor
& Analyzer

System
Monitor
& Security

D-Case
ART-Linux

Tools

Fig. 22. R&D Deliverables and Framework

Each of our teams has made
contributions, including
software for the framework
and documents which describe
processes, standards,
guidelines, etc. Fig.22 is a map
of these contributions.
DEOS tools produced by this
project must work with
existing tools. Software
developed by this project is
just for reference, and it must
be remade to be of practical
use to the products and
services of each user. The
DEOS development center will
work with users to fit the
system to user environments.

Page 40 Version 2.0a

2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

6 Research and Development Organization 6 Research and Development Organization

 This project formed five research teams in 2006 and added four new teams in 2008. They will
continue research and development until March 2012 and March 2014, respectively. At the
Dependable Embedded OS Research and Development Center (DEOS R&D Center), the deliverables
of the research teams will be integrated for practical use, reconfigured in consideration of
intellectual property and maintenance issues, tested, assessed, and packaged in collaboration with
the businesses that will use them in actual products (Fig. 23).

 This project formed five research teams in 2006 and added four new teams in 2008. They will
continue research and development until March 2012 and March 2014, respectively. At the
Dependable Embedded OS Research and Development Center (DEOS R&D Center), the deliverables
of the research teams will be integrated for practical use, reconfigured in consideration of
intellectual property and maintenance issues, tested, assessed, and packaged in collaboration with
the businesses that will use them in actual products (Fig. 23).

 Although there are
currently nine teams
participating in this project,
their research in their
assigned topics alone may not
be enough to achieve our
mission. For instance, file
system dependability is
deemed important, but it is
not currently being studied.

 Although there are
currently nine teams
participating in this project,
their research in their
assigned topics alone may not
be enough to achieve our
mission. For instance, file
system dependability is
deemed important, but it is
not currently being studied.

 From here on, through the
proposals of the system
architecture, the design (basic
and detailed) of the reference
system, and the process of
identifying the required
elemental technologies, it will
become clearer whether open
source software can be
utilized as is or not; or,
whether it is necessary to
conduct further research and development activities in this project.

 From here on, through the
proposals of the system
architecture, the design (basic
and detailed) of the reference
system, and the process of
identifying the required
elemental technologies, it will
become clearer whether open
source software can be
utilized as is or not; or,
whether it is necessary to
conduct further research and development activities in this project.

Area Management Adviser

Area Adviser

Research Promotion Board

Research Supervisor

Deputy Research Supervisor

External
Development
Resources

Consortium

Community

Public Relations
Information
Exchange
Publication
& Advertisement
Results
Dissemination

System Architecture
Framework
Reference System
Management Process
Development Environment
Demonstration System
Maintenance

DEOS R&D Center Research Team

FY 2006 Research Team

FY 2008 Research Team

Core Team

Elemental Technologies
Standards/Guidelines, Int’l Standardization

Elemental Technologies

Sub-core Teams

Area Management Adviser

Area Adviser

Research Promotion Board

Research Supervisor

Deputy Research Supervisor

External
Development
Resources

Consortium

Community

Public Relations
Information
Exchange
Publication
& Advertisement
Results
Dissemination

System Architecture
Framework
Reference System
Management Process
Development Environment
Demonstration System
Maintenance

DEOS R&D Center Research Team

FY 2006 Research Team

FY 2008 Research Team

Core Team

Elemental Technologies
Standards/Guidelines, Int’l Standardization

Elemental Technologies

Sub-core Teams

Fig.23. Research and Development Organization (As of October 2010)

To move this project forward, a Research Promotion Board was established which includes

members from private industry to represent the viewpoint of system or service providers. The
board members and the system and service providers will constantly verify the OS requirements,
determine the requirements for its practical implementation and identify problems related to its
practical application. The progress of the project will be disclosed to the public, opinions from people
outside the team will be invited, and feedback that can be applied to the whole project will be
gathered. This will be done to make the concept of dependability and the methods of developing
and maintaining dependable systems into common public property. The present age of borderless
computer systems and businesses brought on by the Internet and economic globalization calls for the
concepts and techniques of this project to be shared with the international community.

To move this project forward, a Research Promotion Board was established which includes
members from private industry to represent the viewpoint of system or service providers. The
board members and the system and service providers will constantly verify the OS requirements,
determine the requirements for its practical implementation and identify problems related to its
practical application. The progress of the project will be disclosed to the public, opinions from people
outside the team will be invited, and feedback that can be applied to the whole project will be
gathered. This will be done to make the concept of dependability and the methods of developing
and maintaining dependable systems into common public property. The present age of borderless
computer systems and businesses brought on by the Internet and economic globalization calls for the
concepts and techniques of this project to be shared with the international community.

 On April 1st 2010, we regrouped the core team, whose members are from each research group,
into 5 sub-core teams as given below. Each sub-core team researches an area more deeply, to enable
practical use. Most of the results of the sub-core teams and research teams are to be integrated
within the framework (D-fops) or built into tools. We provide the deliverables needed for system or
service providers to realize dependable systems and services.

 On April 1

st 2010, we regrouped the core team, whose members are from each research group,
into 5 sub-core teams as given below. Each sub-core team researches an area more deeply, to enable
practical use. Most of the results of the sub-core teams and research teams are to be integrated
within the framework (D-fops) or built into tools. We provide the deliverables needed for system or
service providers to realize dependable systems and services.

2010/12/01 Version 2.0a Page 41

© 2010 Japan Science and Technology Agency White Paper DEOS Project

 D-Case & Metrics team:

Page 42 Version 2.0a

Research and development,
consensus-building for
dependability metrics and their
required tools.

 EBI team:
Research and development of

system monitoring, analysis and
profiling and required tools.

 VM & Multi-OS team:
Research and development of

virtualization, its application,
and required tools.

 Systems software verification
team:
 Research and development of
system software verification and
its required tools.

 DS-Bench & D-Cloud team:
Research and development of dependability measurement and evaluation, and
required tools.

Framework Tools Process, Standards

Guidelines

Dependability Metrics & Consensus-building
（D-Case & Metrics team

Virtualization & its application
（VM & Multi-OS team)

Security
(Kono team)

Dependability Measure & Evaluation

（DS-Bench/D-Cloud team)

System software Verification
（Systems Software

Verification team)

Process & International Standard
(Kinoshita team)

System monitoring & Evidence analysis
(EBI team)

Framework Tools Process, Standards
Guidelines

Dependability Metrics & Consensus-building
（D-Case & Metrics team

Virtualization & its application
（VM & Multi-OS team)

Security
(Kono team)

Dependability Measure & Evaluation

（DS-Bench/D-Cloud team)

System software Verification
（Systems Software

Verification team)

Process & International Standard
(Kinoshita team)

System monitoring & Evidence analysis
(EBI team)

Fig.24．Role of each Sub-core team

Also, the following teams collaborate with sub-core teams to realize Open Systems
Dependability. (Fig. 24)

 Kono team: Research and development of security and required tools.
 Kinoshita team: Research and development of processes and international standards for

dependability

7 Roadmap

The completion of the following phases devoted to the items described earlier are the principal
milestones of the entire project (Fig.25).

Fig.25. Roadmap (As of October 2010)

2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

 Phase 1 (2006/10-2009/9): Establishment of the dependability concept; presentation of systems
architecture containing major evaluation indexes and development/operation processes
supporting said concept; and demonstration of the 2006 research team’s demo system in which
a number of elemental technologies have been integrated. (Presentation completed 2009/9 by
the 2006 research team.)

 Phase 2 (2009/10-2011/9): Implementation of a system architecture, framework, and reference
system which adopts the elemental technologies of the research team; establishment of a
consortium (or user organization) composed of actual potential users including those from
private industry; formation of an open community for the research and development of
elemental technologies and system architecture; standardization of required items; trial usage
of the framework and reference system by consortium members and the gathering of
feedback thereof; demonstration of the research teams’ frameworks and reference systems in
which some of the elemental technologies have been integrated. (The above will be presented
in September 2011 by the 2008 research team as their interim public presentation.)

 Phase 3 (2011/10-2014/3): Trial usage of the framework and reference system by consortium
members; continuing evaluation and feedback; transition to actual development and
commercialization; standardization of the required items.

 Phase 4 (20014/4-): Functional enhancements; and continuing utilization, maintenance and
development by the consortium.

8 Further Issues for Practical Application

8.1 Handling of Intellectual Property Rights and Copyright

The research and development deliverables of this project will be provided to as many system and
service providers and users as possible for their practical use. The deliverables will be provided in
the form of OSS (Open Source Software) as much as possible, in order to contribute to the
development of a social infrastructure using dependable embedded systems. There are various kinds
of OSS licensing, such as GNU GPL (GNU General Public License), GNU LGPL (Lesser General
Public License), New BSD License, and MPL (Mozilla Public License). The selection of license type
will depend on what is considered to be the best way to spread the use of the deliverables of this
project.

The intellectual property rights, including copyright, of each deliverable primarily belong to the

research organization that produced it. The intellectual properties should be licensed so as to best
spread the use of the project’s future deliverables, and a policy will be decided accordingly.
Intellectual property will be transferred to a specific organization if required and if there is support
from each research organization concerned. The final objective is to provide an IP “one-stop shop”
for the user through one organization such as the DEOS Consortium. Collaboration with external
research and development groups as well as standards organizations will be encouraged, in order to
provide user-friendly deliverables. (The specifics of such collaboration will be considered as a future
issue.)

8.2 Open Systems Dependability Consortium

To put the deliverables of this project to practical use, it is required that their prototypes be tried
out by system and service providers for evaluation, that they go through a large scale evaluation
process, that the evaluation results are used to improve them for practical use, and that the number
of their supporters for practical use be increased. The establishment of a consortium of system and
service providers who are potential users, businesses that are potential providers of the deliverables,
and related research organizations will help the deliverables of this project to continue being used
after their evaluation. This consortium may well take the role of international leadership in
dependability technology, attracting supporters and users of the deliverables and technologies, and

2010/12/01 Version 2.0a Page 43

© 2010 Japan Science and Technology Agency White Paper DEOS Project

contributing to standardization, the development of new technologies, maintenance, education,
certification, etc. The DEOS Center will strive to establish this consortium before project
completion, working with potential users and research organizations. Future issues whose
clarification is needed to achieve these objectives are the method of cooperation with potential users
and research organizations, as well as the role, formation, and funding of the consortium. For
potential users and research organizations to agree to join the consortium, they must understand
how critical Open Systems Dependability is, and each system or service provider must realize that
Open Systems Dependability must be tackled throughout each concerned industry and as a
cross-industry matter. Though the required conditions or the roles of the consortium are under
study with market research, current issues for the objectives or business of the consortium are
summarized below.

1. Understanding the importance of Open Systems Dependability and influencing public opinion

 When system failure occurs, the system or service provider necessarily takes action, and
the users and the service provider will be satisfied to some extent if that action is what was
expected by the users or community. The uncertainty of users and society at large regarding
the cause of the failure is relieved if they see evidence of what has happened presented
according to a standard format and procedure.
 The report “Towards the Realization of Safe and Reliable IT Infrastructure in Information
Society” issued by the Information Science Committee of the Science Council of Japan in 2008
[28], proposed the “establishment of a fact-finding commission for accidents involving
vulnerability of information systems”, that would make proposals about law and education
systems. Collaboration with this kind of organization should be considered.

2. Establishment of industry-wide or society-approved standard procedures or international
standardization
 The procedures for handling system failure and describing it to users or to the public, the
content to be described and required evidence of causes are to be defined and standardized.
This will clarify accountability and provide a standard throughout the community.

3. Certification of standard compliance
There may be a need to certify that the products or processes comply with the established

standards. There is a potential business here, in which a third party agency does the
certification with support from the consortium.

4. Development and maintenance of the deliverables by the development community
 The development of the framework and elemental technologies required to support Open
Systems Dependability cannot by fully carried out by the members of the DEOS project.
Maintenance and continuous development will be required after the DEOS project is
completed. Some of those activities may be carried out by the consortium, but it is important
to utilize overseas resources, to establish an international community for DOES, and to get
overseas world-class researchers and engineers to join in these activities. We hope for a
world-wide discussion of the Open Systems Dependability concept, the improvement of
architecture, application of the process to the real world, and research and development to
realize and improve Open Systems Dependability.

9 References

1. H. Yasuura, “On Dependability”, T. Nanya, “Concept and Issues on Dependability”, K. Iwano,

“Dependability in Social Services”, in Dependability Workshop Report (in Japanese),
CRDS-FY2006-WR-07, CRDS, JST, March 2007

2. http://www.dependability.org/wg10.4/
3. A. Avizienis, J.-C. Laprie, B. Randell, C. E. Landwehr,” Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Trans. On Dependable and Secure Computing, Vol.1, No. 1,
Jan.-March 2004

4. T. Kikuno, “Requirements for Dependability in the 21th Century,” Speech at the Kickoff Symposium
of JST/CREST Dependable Embedded OS Project, December 2006

Page 44 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

5. M. Tokoro, “On Designing Dependable Operating Systems for Social Infrastructures,” Keynote

Speech at MPSoC, Awaji Island, Japan, June 25, 2007.
6. H. Yasuura, ”Dependable Computing for Social Systems”, Journal of IEICE、Vol.90, No.5, pages

399-405, May 2007
7. T. Kano & Y. Kikuchi, ”Dependable IT/Network”, NEC Technology, Vol.59, No.3, 2006, pages 6-10
8. M. Y. Hsiao, W. C. Carter, J. W. Thomas, and W. R. Stringfellow, “Reliability, Availability, and

Serviceability of IBM Computer Systems: A Quarter Century of Progress”, IBM J. Res. Develop., Vol.
25, No. 5, 1981, pages 453-465

9. A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing era”, IBM Systems Journal,
Vol. 42, No. 1, 2003, pages 5-18

10. “An architectural blueprint for autonomic computing, 4th edition”, IBM Autonomic Computing
White Paper, June 2006

11. http://www-03.ibm.com/autonomic/
12. Mario Tokoro, ”Research and Development at Technology Maturity Stage”, Journal of IEICE, Vol.90,

No.9, 2007, pages 742-744
13. Mario Tokoro and others, “Open System Science”, NTT Publishing Co., Ltd
14. H. B. Diab, A. Y. Zomaya, “Dependable Computing Systems”, Wiley-Interscience
15. G. M. Koob, C. G. Lau, “Foundations of Dependable Computing”, Kluwer Academic Publishers
16. M. C. Huebscher, J. A. McCann, “A survey of Autonomic Computing”, ACM Computing Surveys, Vol.

40, No.3, Article 7, August 2008, pages 7:1-7:28
17. K. Matsuda, Foreword, IPA SEC journal No.16， Volume 5, No. 1(Volume 16), 2009, page 1
18. T. Forbath, interview ”Japanese Company should break-away from the 20th century Development

Process ” NIKKEI ELECTRONICS 2009.2.23, page 29
19. A. Avizienis, ” Design of fault-tolerant computers”, In Proc. 1967 Fall Joint Computer Conf., AFIPS

Conf. Proc.Vol.31, pages 733-743, 1967
20. Nassim Nicholas Taleb、The Black Swan: The Impact of the Highly Improbable, Random

House.
21. Leveson, Nancy G., Safeware: System Safety and Computers, Pearson Education.
22. Failure Chains: Warning of the Prius Recall, Nikkei BP press(in Japanese)
23. Owada Naotaka and others, Why Systems Go Down. Nikkei BP press (in Japanese)
24. H. B. Diab, A. Y. Zomaya, “Dependable Computing Systems”, Wiley-Interscience
25. G. M. Koob, C. G. Lau, “Foundations of Dependable Computing”, Kluwer Academic Publishers
26. K.Kanoun, L.Spainhower, “Dependability Benchmarking for Computer Systems”, IEEE

Computer Society
27. B.Kirwan,"A Guide to Practical Human Reliability Assessment”, CRC Press

Science Council of Japan, Board of Informatics, Sectional committee of Security and
Dependability, “Toward the popularization of IT infrastructure realizing Safety and Security”,
(Chair: Hideki Imai), 2008/6/26. (http://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-20-t58-4.pdf）

28. Dependable Operating Systems for Embedded Systems Aiming at Practical Applications
Research Area (DEOS Project) White Paper Version1.0, DEOS-FY2010-WP-01, JST, Sep. 1,
2009

10 Appendix

10.1 Dependability Obstructions

If we try to focus on a software’s working environment as a dependability obstruction, its faults
can be divided into four categories: faults from the environment during both operation and
development, faults that are hardware-related, faults brought about by human error, and faults
caused by a random attack. Each fault category can be fully understood by considering the
dependability obstructions that type of fault causes in each lifecycle from the time of inception until
termination. A summary is shown in the table below (Table 2).

2010/12/01 Version 2.0a Page 45

© 2010 Japan Science and Technology Agency White Paper DEOS Project

To identify these obstructions in embedded OS and other peripheral technologies, the table can be

divided into three areas:

(1) Areas that should be covered by a process and/or organization (company) utilized by the
developer or service provider; as well as areas that should be covered in system integration.

(2) Areas where dependability technology is required for other OS-related components.
(3) Areas where large contributions to dependability can be expected from the OS and other

peripheral technologies.

These areas are respectively colored yellow, white, and orange in Table 2.

New techniques and technologies, along with traditional technologies such as CMMI, modern PM

(Project Management) techniques, etc. need to be developed to address the problems posed by the
above faults in modern embedded devices in the 21st century. These are required for the proper
setting of requirements/specifications for design, development and testing. This difficult task must
be accomplished, because with the development of large-scale software, embedded systems are no
longer considered mere stand-alone products but rather as fundamental parts of a whole
infrastructure that provides service to users through a network. The training of engineers and the
management for this purpose have become crucial.

10.2 Related Standards and Organizations

Standard

 IEC 61508: Functional Safety
http://www.iec.ch/zone/fsafety/fsafety_entry.htm

Environment (Operating Environment, Development Environment, etc.) Hardware Human Error Security Issue / Risks

Specification changes in the environment [natural environment, system environment
(hardware, software), user environment (organization, operating
environment), reuse of existing applications, frequent changes in
requirement]

errors in hardware resource estimation,
lack of consideration for software productivity

errors in specification estimation, performance simulation (inaccurate
load), noncompliance to standards

theft of plans/specifications, sending of erroneous/malicious information
from outside

Design wrong tolerance design (for natural environment, system environment
and operating environment), lack of consideration for target operator
(end-user, administrator, etc.), bugs in design tool, errors in analysis of
system interdependency, trouble arising from reusing existing programs,
errors in design tool selection, frequent changes in specification

insufficient implementation of test functions,
lack of consideration for software performance (inadequate software and
hardware partitioning),
specification mismatch between parts

errors in architecture selection/design, errors in interface design
between modules/subsystems,
omissions in design review, misinterpretation of specifications, errors in
hardware performance estimation, errors in user interface design, wrong
handling of exceptions, mismatch in software versions, insufficient
design in fault recovery

theft of design information

Implementation and Unit testing bugs in development tool, insufficiencies in development environment,
bugs in development environment (version mismatch, etc), inadequate
training program, insufficient verification (failure and performance) of the
software to be used, frequent changes in design

schedule delay/miss in the development of target embedded hardware,
poor yield/quality, specification mismatch bugs (that can be fixed within
the term/cannot be fixed within the term)

errors in coding, omissions in code review, errors in algorithm,
errors in library selection, integration
version mismatch, errors in timing assumption,
escapes in unit tests, piracy, patent infringement

illegal production fraud, theft of source code,
patent litigation, copyright lawsuit, embedding of malicious code

Integration, Test bugs in test tool/test environment, insufficient test period, frequent
changes in implementation

insufficient testing on the hardware functions, left over hardware bugs insufficient test items (test cases, operation),
errors in test result verification, errors in test items,
errors in test reviews or test environment configuration

mixing of inferior parts, altering of test results,
theft of test specification/results, intentional omissions

Distribution / Transportation changes in the environment (natural environment,
distribution systems, people in charge, distribution rules）

changes in environmental factors (temperature, shock and tilt during
transport, submersion in water, other damages）

mixing of defective and counterfeit parts, occurrence of accidents during
transport

mixing of counterfeit and stolen parts, damage, tampering

Operation aging (changes over time), environment temperature,
environment humidity, errors related to other systems' failures,
system downtime due to unexpected data, input overload,
shock/impact, power failures (power flicker, fluctuations,
blackout, unplugging of electrical outlet), noise (electromagnetic ray,

static electricity, cosmic ray), frequent version updates/patches,
excessive operation cost, service termination or malfunction due to
remaining bugs

deterioration of hardware (mechanical, chemical, physical), poor contact
(connection, switch), excessive power consumption, noise,
electromagnetic noise, heat

misunderstandings of specification, user error due to poor user interface
design, incorrect operation (incorrect function selection, incorrect data
entry or selection), errors in installation, errors in configuration, errors in
data transfer

infiltration during operation (spyware, virus, attack),
attaching of illegal modules, extraction of data, intrusion,
information leakage

Maintenance, Update irreproducible bugs/errors, bugs in maintenance/update tool ,
frequent (excessive) version updates,
lack of version update history data, excessive maintenance cost

lack of features for collecting malfunction information,
Inappropriate maintenance period of parts,
incompatibility of new parts

insufficient notice of a malfunction,
communication errors in malfunction information,
version mismatch, backup failure, restoration failure, insufficient version

upgrades (incomplete operation)

infiltration during maintenance/update (virus, attack),
installation of illegal modules, theft of data

Disposal, Reuse traces of deleted information pollution, insufficient recycling or reuse plans errors in deleting personal information, operation history, etc. theft of information/parts

Environment (Operating Environment, Development Environment, etc.) Hardware Human Error Security Issue / Risks

Specification changes in the environment [natural environment, system environment
(hardware, software), user environment (organization, operating
environment), reuse of existing applications, frequent changes in
requirement]

errors in hardware resource estimation,
lack of consideration for software productivity

errors in specification estimation, performance simulation (inaccurate
load), noncompliance to standards

theft of plans/specifications, sending of erroneous/malicious information
from outside

Design wrong tolerance design (for natural environment, system environment
and operating environment), lack of consideration for target operator
(end-user, administrator, etc.), bugs in design tool, errors in analysis of
system interdependency, trouble arising from reusing existing programs,
errors in design tool selection, frequent changes in specification

insufficient implementation of test functions,
lack of consideration for software performance (inadequate software and
hardware partitioning),
specification mismatch between parts

errors in architecture selection/design, errors in interface design
between modules/subsystems,
omissions in design review, misinterpretation of specifications, errors in
hardware performance estimation, errors in user interface design, wrong
handling of exceptions, mismatch in software versions, insufficient
design in fault recovery

theft of design information

Implementation and Unit testing bugs in development tool, insufficiencies in development environment,
bugs in development environment (version mismatch, etc), inadequate
training program, insufficient verification (failure and performance) of the
software to be used, frequent changes in design

schedule delay/miss in the development of target embedded hardware,
poor yield/quality, specification mismatch bugs (that can be fixed within
the term/cannot be fixed within the term)

errors in coding, omissions in code review, errors in algorithm,
errors in library selection, integration
version mismatch, errors in timing assumption,
escapes in unit tests, piracy, patent infringement

illegal production fraud, theft of source code,
patent litigation, copyright lawsuit, embedding of malicious code

Integration, Test bugs in test tool/test environment, insufficient test period, frequent
changes in implementation

insufficient testing on the hardware functions, left over hardware bugs insufficient test items (test cases, operation),
errors in test result verification, errors in test items,
errors in test reviews or test environment configuration

mixing of inferior parts, altering of test results,
theft of test specification/results, intentional omissions

Distribution / Transportation changes in the environment (natural environment,
distribution systems, people in charge, distribution rules）

changes in environmental factors (temperature, shock and tilt during
transport, submersion in water, other damages）

mixing of defective and counterfeit parts, occurrence of accidents during
transport

mixing of counterfeit and stolen parts, damage, tampering

Operation aging (changes over time), environment temperature,
environment humidity, errors related to other systems' failures,
system downtime due to unexpected data, input overload,
shock/impact, power failures (power flicker, fluctuations,
blackout, unplugging of electrical outlet), noise (electromagnetic ray,

static electricity, cosmic ray), frequent version updates/patches,
excessive operation cost, service termination or malfunction due to
remaining bugs

deterioration of hardware (mechanical, chemical, physical), poor contact
(connection, switch), excessive power consumption, noise,
electromagnetic noise, heat

misunderstandings of specification, user error due to poor user interface
design, incorrect operation (incorrect function selection, incorrect data
entry or selection), errors in installation, errors in configuration, errors in
data transfer

infiltration during operation (spyware, virus, attack),
attaching of illegal modules, extraction of data, intrusion,
information leakage

Maintenance, Update irreproducible bugs/errors, bugs in maintenance/update tool ,
frequent (excessive) version updates,
lack of version update history data, excessive maintenance cost

lack of features for collecting malfunction information,
Inappropriate maintenance period of parts,
incompatibility of new parts

insufficient notice of a malfunction,
communication errors in malfunction information,
version mismatch, backup failure, restoration failure, insufficient version

upgrades (incomplete operation)

infiltration during maintenance/update (virus, attack),
installation of illegal modules, theft of data

Disposal, Reuse traces of deleted information pollution, insufficient recycling or reuse plans errors in deleting personal information, operation history, etc. theft of information/parts

Table 2. Dependability Obstructions

Page 46 Version 2.0a
2010/12/01

http://www.iec.ch/zone/fsafety/fsafety_entry.htm

DEOS Project White Paper © 2010 Japan Science and Technology Agency

 IEC 60300-1: Dependability Management
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=tex
t&searchfor=IEC+60300-1&submit=OK

 IEC 60300-2: Dependability Program Elements and Tasks
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=tex
t&searchfor=IEC+60300-2&submit=OK

 ISO/IEC 12207: Software Life Cycle Processes
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21208

 ISO/IEC 15288: System Life Cycle Processes
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43564

Process Guide

 CMMI: Capability Maturity Model® Integration http://www.sei.cmu.edu/cmmi/
 DO-178B: Software Considerations in Airborne Systems and Equipment Certification

http://www.rtca.org/
 MISRA-C: http://www.misra-c.com/
 IEC 61713: Software dependability through the software life-cycle processes- Application guide

http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=tex
t&searchfor=IEC+61713&submit=OK

 IEC 62347: Guidance on system dependability specifications
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=tex
t&searchfor=IEC+62347&submit=OK

Software

 SELinux: Security-Enhanced Linux http://www.nsa.gov/research/selinux/index.shtml
 AppArmor®: a Linux application security framework

http://www.novell.com/linux/security/apparmor//
 Xen® hypervisor: the powerful open source industry standard for virtualization

http://www.xen.org/

Related Organizations/Projects

 ISO: International Organization for Standardization http://www.iso.org/iso/home.htm
 IEC: International Electrotechnical Commission http://www.iec.ch/
 ISO/IEC JTC1: Joint ISO/IEC Technical Committee 1

http://www.iso.org/iso/standards_development/technical_committees/list_of_iso_technical_com
mittees/iso_technical_committee.htm?commid=45020

 IEC/TC56: Technical Committee 56: IEC Technical Committee for International Standards in
the field of Dependability http://tc56.iec.ch/index-tc56.html

 OpenTC Consortium: Open Trusted Computing Consortium
 http://www.opentc.net/
 Linux-HA Project: High Availability Linux Project http://linux-ha.org/
 Carrier Grade Linux Workgroup：http://www.linuxfoundation.org/en/Carrier_Grade_Linux
 TCG: Trusted Computing Group https://www.trustedcomputinggroup.org/home
 CELF: CE Linux Forum, an international open source software development community

http://www.celinuxforum.org/
 ERTOS Group: Embedded Real-Time Operating-Systems Group http://ertos.nicta.com.au/
 ARTEMIS: Advanced Research & Technology for Embedded Intelligence and Systems

http://www.artemis.eu/
 CPS Program: Cyber-Physical Systems Program

http://www.nsf.gov/pubs/2008/nsf08611/nsf08611.htm
 MISRA: Motor Industry Software Reliability Association http://www.misra.org.uk/
 AUTOSAR: Automotive Open System Architecture http://www.autosar.org/
 JasPar: Japan Automotive Software Platform and Architecture https://www.jaspar.jp/
 FlexRay Consortium: Consortium for the communications system for advanced automotive

control applications http://www.flexray.com/
 NoTA: Network on Terminal Architecture http://www.notaworld.org/
 LIMO Foundation: Industry Consortium dedicated to Linux-based operating system for mobile

devices http://www.limofoundation.org/

2010/12/01 Version 2.0a Page 47

http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=text&searchfor=IEC+60300-1&submit=OK
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=text&searchfor=IEC+60300-1&submit=OK
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=text&searchfor=IEC+60300-2&submit=OK
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=text&searchfor=IEC+60300-2&submit=OK
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21208
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43564
http://www.sei.cmu.edu/cmmi/
http://www.rtca.org/
http://www.misra-c.com/
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=text&searchfor=IEC+61713&submit=OK
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=text&searchfor=IEC+61713&submit=OK
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=text&searchfor=IEC+62347&submit=OK
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=text&searchfor=IEC+62347&submit=OK
http://www.nsa.gov/research/selinux/index.shtml
http://www.novell.com/linux/security/apparmor/
http://www.xen.org/
http://www.iso.org/iso/home.htm
http://www.iec.ch/
http://www.iso.org/iso/standards_development/technical_committees/list_of_iso_technical_committees/iso_technical_committee.htm?commid=45020
http://www.iso.org/iso/standards_development/technical_committees/list_of_iso_technical_committees/iso_technical_committee.htm?commid=45020
http://tc56.iec.ch/index-tc56.html
http://www.opentc.net/
http://linux-ha.org/
http://www.linuxfoundation.org/en/Carrier_Grade_Linux
https://www.trustedcomputinggroup.org/home
http://www.celinuxforum.org/
http://ertos.nicta.com.au/
http://www.nsf.gov/pubs/2008/nsf08611/nsf08611.htm
http://www.autosar.org/
https://www.jaspar.jp/
http://www.flexray.com/
http://www.notaworld.org/
http://www.limofoundation.org/

© 2010 Japan Science and Technology Agency White Paper DEOS Project

10.3 DEOS Project Terminology

Availability: The ability of a system to keep a high operating ratio.

Reliability: The ability of a system to perform a specified function for an expected period of time.

Serviceability（Maintainability）: The ability to efficiently maintain a system, e.g. through

modification, debug, and repair.

Integrity: The ability of a system to prevent improper system and data alteration.

Security: The protection of a system from external attack that causes degradation of availability,

reliability, serviceability, or integrity.

Dependability: Ability to deliver services that can justifiably be trusted. This is a composite of

availability, reliability, safety, integrity and maintainability.

Open system: A system whose definition keeps changing during development or during operation

and/or whose operation may change with environmental changes such as connection to
external systems through a network.

Closed system: A system which is isolated from other systems during operation, and whose system

requirements and configurations do not change during operation.

Black box: The systems or software components whose internal design is unknown and which is

integrated to a system based on external specifications only.

Legacy software: The software whose designers and maintainers are not available for maintenance

but which is still built-in and working in a system.

Incompleteness: The property of a system with incomplete requirement specifications, so that it is

difficult to fully understand as well as guarantee the system’s behavior upon shipment.

Uncertainty: The possibility that a system’s configuration will be changed by its usage environment

during the lifecycle of the system, making it difficult to completely predict the behavior of
the system during the design phase.

Open systems failure: Failure that is caused by incomplete and uncertain factors which are not clear

in the design phase. The possibility of these failures is inherent in embedded systems.

Open Systems Dependability: The ability to continuously perform measures that remove the factors

of failure before they cause failure, to provide appropriate and quick action when they
occur, to manage the failure in order to minimize the damage so that the system can safely
and continuously provide the services expected by users to as great a degree as possible,
and to maintain accountability for the system operations and processes.

Manage: To solve a problem with efficient use of effort, and develop the state of the system in a

favorable direction.

DEOS Process: Double helix process consists of the “requirements/environment change

accommodating cycle” and the “failure reacting cycle” to achieve open systems
dependability.

Page 48 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

D-Case Growth Cycle: A cycle in which D-Case expands and improves over time, which indicates

improvements in the system.

Requirement/Environment Change Accommodating Cycle: A cycle to respond and accommodate to

changes in stakeholders’ requirements or changes in environment.

Failure Reacting Cycle: A cycle to react to system failures.

System Change Requests based on Stakeholders’ Agreement: Requests to change systems with

stakeholders’ agreement after discussion and resolution of the existing conflicts of change
requests among stakeholders.

Failure Prevention: To avoid system failure by predicting system failure and anomalies.

Responsive Action: To respond to system failure or to a problem system state as soon as possible

Normal Operation: Daily operation with appropriate periodical inspection and preventive

maintenance, and with effort to avoid the repeat of similar failures by performing
continuous improvement activities (Kaizen).

Achievement of Accountability: To deal with system failure by determining and explaining the cause,

making a recovery plan, and explaining the current status and procedures taken clearly to
the stakeholders.

Cause Analysis: To identify the cause of failure or to identify areas of possible causes of failure based

on evidence.

Embedded System: A system with software within a system whose primary purpose is not

computational.

System Architecture: A system’s concept, fundamental functions, and structure.

Elemental Technology: Technology to realize required functions.

Process: Steps for developing and operating systems or services, which include requirement

formulation, design, development, implementation, testing, operation and maintenance
phases.

Metrics: Qualitative or quantitative indices to evaluate objects. Quantitative values are preferable,

because they facilitate comparisons and the certification of improvements.

Framework: D-fops is the framework of our project, which enables the construction of an architecture

of Open Systems Dependability, to which are integrated the elemental technologies
enabling the required processes.

Standard: The functions achieving an objective, with the required level of performance and quality

defined.

Internationalization: To deploy certain concepts or technologies worldwide, not limiting the

deployment to a country or predefined area.

Consortium: A group of organizations or persons who share objectives and intend to cooperate to

achieve those objectives.

Evidence: Valuable information which supports a claim through an argument.

2010/12/01 Version 2.0a Page 49

© 2010 Japan Science and Technology Agency White Paper DEOS Project

Virtualization Technology: Technology for managing computational resources by running an
abstraction of the system, and for enabling the logical partition of computational resources.

Formal Verification: To prove the correctness or incorrectness of programs by formal or

mathematical methods.

Model Checking: Software verification technique that exhaustively checks whether a program works

correctly, without the occurrence of any critical error conditions such as deadlock or
infinite loop.

Type Checking: Software verification technique that identifies errors in a program on the basis of the

presence of explicitly or implicitly stated variable types.

Specification Description Language: A language which can describe the properties that a program

needs to satisfy.

TAL: Typed Assembly Language: Assembly language annotating types to values, which enables type
 checking for proper memory management or flow count.

10.4 DEOS Project Members

Research Supervisor

Mario Tokoro, SONY Computer Science Laboratories, Inc.

Deputy Research Supervisor

Yoichi Muraoka, Waseda University

Area Advisors

Kazuo Iwano, IBM Japan, Ltd.
Tohru Kikuno, Osaka University
Kohichi Matsuda, Information-Technology Promotion Agency, Japan
Yoshiki Seo, NEC Laboratories America, Inc.
Hidehiko Tanaka, Institute of Information Security
Hiroto Yasuura, Kyushu University

Research Directors

Yutaka Ishikawa, University of Tokyo
Satoshi Kagami, National Institute of Advanced Industrial Science and Technology
Yoshiki Kinoshita, National Institute of Advanced Industrial Science and Technology
Kenji Kono, Keio University
Kimio Kuramitsu, Yokohama National University
Toshiyuki Maeda, University of Tokyo
Tatsuo Nakajima, Waseda University
Mitsuhisa Sato, University of Tsukuba
Hideyuki Tokuda, Keio University

Research Promotion Board Members
Nobuhiro Asai, IBM Japan, Ltd.
Tadashi Morita, Sony Corporation
Masamichi Nakagawa, Panasonic Corporation
Takeshi Ohno, Yokogawa Electric Corporation
Ichiro Yamaura, Fuji Xerox Co., Ltd.
Kazutoshi Yokoyama, NTT Data Corporation

Area Management Advisors

Page 50 Version 2.0a
2010/12/01

DEOS Project White Paper © 2010 Japan Science and Technology Agency

Kazuo Kajimoto, Panasonic Corporation
Kazuyasu Sasuga, Fuji Xerox Co., Ltd.
Yuzuru Tanaka, Hokkaido University
Seishiro Tsuruho, HAL Tokyo

Dependable Embedded OS Research and Development Center
Makoto Yashiro, Japan Science and Technology Agency

2010/12/01 Version 2.0a Page 51

	1 Background
	2 Dependability
	2.1 Brief Historical Review
	2.2 Environment of Embedded Systems and Requirements
	2.3 Open Systems Dependability
	2.4 DEOS Process

	3 Phases of the DEOS Process
	3.1 System Change-Requests based on Stakeholders’ Agreement
	3.2 Design, Implementation, Verification, and Testing
	3.3 Achievement of Accountability
	3.4 Failure Prevention
	3.5 Responsive Action
	3.6 Cause Analysis
	3.7 Normal Operations

	4 Project Direction
	4.1 Project Goal
	4.2 Project Objectives
	4.3 Realizing Open Systems Dependability
	4.4 Project Deliverables

	5 Major Research and Development Status
	5.1 Framework
	5.2 Dependability Metrics and Stakeholders’ Agreement Processes
	5.3 System Monitoring and Evidence Analysis
	5.4 Security
	5.5 Virtualization and its Application
	5.6 Systems Software Verification
	5.7 Dependability Measurement Tools and Test Tools
	5.8 Process and International Standards
	Formation of “User Oriented Dependability” concept
	Drafting dependability standards
	Establishing evaluation methodology
	Establishing lifecycle technology

	5.9 Research and Development Activity Results

	6 Research and Development Organization
	7 Roadmap
	8 Further Issues for Practical Application
	8.1 Handling of Intellectual Property Rights and Copyright
	8.2 Open Systems Dependability Consortium

	9 References
	10 Appendix
	10.1 Dependability Obstructions
	10.2 Related Standards and Organizations
	10.3 DEOS Project Terminology
	10.4 DEOS Project Members

