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Introduction (1)�
}  Increasing demands for highly dependable system 

}  Today’s society totally depends on information systems, and suspension 
of services cost a lot 

}  A complex system involves a lot of stakeholders (e.g. developer, 
supplier, user, etc…) 

}  All of them must agree on what is the  “dependability” for their 
system, e.g. minimum throughput or maximum latency 
}  The dependability of the system should be expressed clearly and 

supported by clear evidences so that every stakeholder agrees that the 
system is in fact dependable 
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Introduction (2)�
}  Some argument on system’s dependability may require 

quantitative evaluation of the system 
}  An automated benchmark testing tool is needed 

}  Systems are getting more parallel and distributed 
}  Testing takes much time and cost 

}  Results of the tests should be automatically collected as 
evidences of dependability 
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DS-Bench Toolset: Overview�

D-Case Editor	
DS-Bench	

D-Cloud	
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D-Case Editor �

D-Case Editor	
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D-Case [Matsuno PRDC2010] �
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}  A kind of Assurance Cases with 
development tools and runtime 
monitoring systems 

}  Assurance Cases 
}  “A documented body of evidence 

that provides a convincing and 
valid argument that a system is 
adequately dependable for a given 
application in a given 
environment” [Adelard] 

}  Becoming a standard for safety-
critical systems 

}  A Graphical notations GSN (Goal 
Structuring Notation) 

Goal	 

 	 

 	  	 

 	 

 	 

Evidence	 Evidence	 Evidence	 
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D-Case Editor �
}  A free assurance case editor 

}  An Eclipse plugin using 
Eclipse GMF 

}  Supports GSN 

}  Key Features 
}  Variable type checking and 

pattern library [Matsuno 
QSIC2011] 

}  Conducting benchmark tests 
using DS-Bench 
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DS-Bench �

DS-Bench	
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DS-Bench: Overview�
}  A framework for automatic benchmark tests 

}  Dependability metrics are defined and measured by each 
program. DS-Bench itself does not define them. 

}  Supports multiple benchmark programs 
}  Existing benchmark programs, as well as user-developed ones, 

can be executed on DS-Bench 

DS-Bench 
Controller	

Target Machines	

Benchmark  A	

Benchmark  B	

Benchmark  C	
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Deploying & executing 
benchmark programs	

Returning results	Benchmark 
Database	
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DS-Bench: Benchmark Results �
}  Handling outputs from various benchmark programs 

}  Output style of benchmark programs may vary 
}  Usually the output is pre-formatted for human readability 

}  Benchmark description is prepared for each benchmark 
program 
}  Describes cutting rules for interpreting the raw result so that a text 

table can be converted to a list of machine readable values 

}  Converted results are stored in an XML database 
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Benchmark 
description	
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DS-Bench: Anomaly Loads�
}  Anomaly loads simulate several irregular situations that 

may occur to the system 
}  E.g. Whole machine failure, device failure, performance 

degradation, … 

}  Essential for dependability benchmark testing 
}  We want to know if the system is still dependable under such 

conditions	
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DS-Bench: Pre-installed Programs �
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Name	 Description	

bonnie++	 I/O benchmark	

lmbench	 Generic performance benchmark	

hackbench	 System benchmark; creates a lot of processes	

httperf	 Measures performance of HTTP servers	

iperf	 Measures network bandwidth	

cpustress	 Stresses CPU; just consumes CPU time	

memstress	 Stresses memory; just consumes memory 

netcmd	 Injecting network anomalies; delay, packet drop, reordering	

terminator	 Kills a process	

Each program may be used as a benchmark program or anomaly generator. Some 
of them may be used as both. 
e.g. bonnie++ can be used as a benchmark program to measure I/O bandwidth, as 
well as an anomaly generator that consumes I/O bandwidth.	
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DS-Bench: Benchmark Scenario (1)�
}  Benchmark programs and anomaly loads are executed 

concurrently in a specific timing	
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DS-Bench: Benchmark Scenario (2)�
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}  Each scenario may define input parameters and an output 
result 
}  Input parameters are adjustable from D-Case Editor 
}  An output result can be obtained from D-Case Editor 

}  Example: 

Scenario: 
•  Client machines access to a 

web server cluster 
•  A power failure occurs to 

one server node 
•  The server has an automatic 

failover mechanism 

Input Parameter: 
•  Request 

frequency 
[reqs/s] 

Output: 
•  Maximum 

observed 
latency [ms] 
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D-Cloud �

D-Cloud	
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D-Cloud: Overview�
}  D-Cloud manages hardware resources needed for 

conducting benchmark tests 
}  Two types of computing resources are provided 

}  Physical machines 
}  For performance-sensitive tests 

}  Virtual machines 
}  Managed by OpenStack, a management software for private clouds 
}  An arbitrary number of virtual machines can be created 

simultaneously 
}  For functional, performance-insensitive tests 
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D-Cloud: Fault Injection �
}  D-Cloud also performs fault injection 

}  Adding anomalies from the outside of target machines 
}  Mostly requires special equipment (e.g. intelligent PDUs, IPMI, 

SNMP-enabled switch), or special software (e.g. VMM) 

}  FaultVM [Banzai CLOUD2010][Hanawa PRDC2010] 

}  A virtual machine monitor that comes with a hardware failure 
simulation feature 

}  Based on QEMU, an open source full system emulator 

}  Fault injection functions are exported to DS-Bench and 
can be used as anomaly generators 
}  i.e. These fault injectors can be put in a benchmark scenario 
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D-Cloud: List of Fault Injection Methods �
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Name	 Target	 Description	

LinkRefuse	 Physical Machine	 Shuts down a network switch port	

SupplyRefuse	 Physical Machine	 Shuts down a power supply to a target	

IPMICtrl	 Physical Machine	 Controls a power status of a target via IPMI	

VMMemFlip	 Virtual Machine	 Injects memory flip into VM	

VMStop	 Virtual Machine	 Pauses a VM	

VMNicFault	 Virtual Machine	 Injects a various fault into VM’s virtual NIC 
device	

Fault injection methods for physical machines are implemented as a program, and 
can be added by users just as benchmark programs	
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Typical Workflow with the Toolset�
1.  Determine the required 

dependability metrics and 
describe it in D-Case 

2.  Find a suitable benchmark 
scenario in DS-Bench 
database 

}  If not exist, create new one 

3.  Adjust parameters and run 
the benchmark test from 
D-Case Editor 

4.  Result is returned to D-
Case Editor and recorded 
as an evidence for D-Case 
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Get a 
scenario	

Execute 
benchmark	

Record 
result as an 
evidence 
for D-Case	
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Demonstration �
}  Evaluating a web server system 
}  Dependability requirement 

}  Keep the access latency lower than 3s even one server node fails 
}  Environment 

}  The server provides a single system view using SSPA, a load 
balancing/high availability mechanism [Fujita HASE2011] 
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DS-Bench/D-Cloud	

Web Clients 
(Virtual Machines)	

Web Servers 
(Physical Machines)	

httperf: 
measures reply 

latency	

Access	

Anomaly Generator 
(Disabling NIC)	

Single IP Address	
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Demo: Creating a New Scenario �

21	 DSN 2012, Boston, MA, USA	



Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a New Scenario �
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Demo: Creating a D-Case Diagram �
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Demo: Creating a D-Case Diagram �
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Demo: Creating a D-Case Diagram �
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Demo: Creating a D-Case Diagram �
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Demo: Creating a D-Case Diagram �
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Demo: Selecting a Benchmark Scenario �

39	 DSN 2012, Boston, MA, USA	



Demo: Selecting a Benchmark Scenario �
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Demo: Selecting a Benchmark Scenario �
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Demo: Selecting a Benchmark Scenario �

42	 DSN 2012, Boston, MA, USA	



Demo: Selecting a Benchmark Scenario �
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Demo: Setting Benchmark Parameters �
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Demo: Setting Benchmark Parameters �
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Demo: Setting Benchmark Parameters �
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Demo: Benchmark Execution �
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Demo: Benchmark Execution �
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Demo: Benchmark Execution �
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Demo: Benchmark Execution �
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Demo: Benchmark Execution �
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Demo: Benchmark Execution �
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Demo: Benchmark Execution �
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Demo: Benchmark Execution �
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Demo: Benchmark Result �
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Demo: Benchmark Result �
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Demo: Benchmark Result �
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Related Work �
}  ASCE Tool [Adelard] 

}  An well-used assurance case editor. Mainly for generating 
certification documents 

}  D-Bench [Kanoun 2004, Durães 2004] 
}  A project aimed at establishing dependability benchmarking 

methods for several domains 
}  Proposed dependability metrics and measurement tools for 

several target domains, however did not provide a total 
software framework to integrate multiple benchmarks 

}  Fault injection tools 
}  As far as we know, no effort have been made to combine 

assurance cases and benchmark results dynamically	
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Summary�
}  An automated tool for dependability benchmarking, with 

dependability assurance, is needed 
}  DS-Bench Toolset 

}  D-Case Editor, an assurance case editor 
}  DS-Bench, a framework for benchmark test 
}  D-Cloud, a system for managing hardware resources for 

benchmark test 
}  Tight collaboration between D-Case Editor and DS-

Bench 
}  Dependability requirements are described in D-Case 
}  DS-Bench conducts benchmark tests to obtain a quantitative 

evidence for D-Case	
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Questions?�
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}  D-Case Editor is available from 
}  http://www.dependable-os.net/tech/D-CaseEditor/ 

}  DS-Bench/D-Cloud will be available from 
}  http://www.dependable-os.net/tech/DSBenchDCloud/ 

}  We thank Hajime Ueno for designing D-Case Editor with us. We also thank Shingo 
Takeda and Hideaki Koizumi for helping us with preparing the demonstration. 
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