
DS-Bench Toolset:
Tools for Dependability Benchmarking with

Simulation and Assurance�

Hajime Fujita (U. of Tokyo, Japan)[*1]

Yutaka Matsuno (U. of Tokyo, Japan) [*2]

Toshihiro Hanawa (U. of Tsukuba, Japan)

Mitsuhisa Sato (U. of Tsukuba, Japan)

Shinpei Kato (UC Santa Cruz, USA) [*2]

Yutaka Ishikawa (U. of Tokyo, Japan)�

[*1] Currently in the University of Chicago, USA
[*2] Currently in Nagoya University, Japan	

This work has been conducted as a part of the “Dependable Embedded Operating System for Practical Use
(DEOS)” project, funded by JST (Japan Science and Technology Agency).

Dependable Systems and Networks (DSN 2012), Boston, MA, USA	

Introduction (1)�
}  Increasing demands for highly dependable system

}  Today’s society totally depends on information systems, and suspension
of services cost a lot

}  A complex system involves a lot of stakeholders (e.g. developer,
supplier, user, etc…)

}  All of them must agree on what is the “dependability” for their
system, e.g. minimum throughput or maximum latency
}  The dependability of the system should be expressed clearly and

supported by clear evidences so that every stakeholder agrees that the
system is in fact dependable

2	 DSN 2012, Boston, MA, USA	

Introduction (2)�
}  Some argument on system’s dependability may require

quantitative evaluation of the system
}  An automated benchmark testing tool is needed

}  Systems are getting more parallel and distributed
}  Testing takes much time and cost

}  Results of the tests should be automatically collected as
evidences of dependability

3	 DSN 2012, Boston, MA, USA	

DS-Bench Toolset: Overview�

D-Case Editor	
DS-Bench	

D-Cloud	

4	 DSN 2012, Boston, MA, USA	

D-Case Editor �

D-Case Editor	

5	 DSN 2012, Boston, MA, USA	

D-Case [Matsuno PRDC2010] �

6	

}  A kind of Assurance Cases with
development tools and runtime
monitoring systems

}  Assurance Cases
}  “A documented body of evidence

that provides a convincing and
valid argument that a system is
adequately dependable for a given
application in a given
environment” [Adelard]

}  Becoming a standard for safety-
critical systems

}  A Graphical notations GSN (Goal
Structuring Notation)

Goal	

 	

 	 	

 	

 	

Evidence	 Evidence	 Evidence	

DSN 2012, Boston, MA, USA	

D-Case Editor �
}  A free assurance case editor

}  An Eclipse plugin using
Eclipse GMF

}  Supports GSN

}  Key Features
}  Variable type checking and

pattern library [Matsuno
QSIC2011]

}  Conducting benchmark tests
using DS-Bench

7	 DSN 2012, Boston, MA, USA	

DS-Bench �

DS-Bench	

8	 DSN 2012, Boston, MA, USA	

DS-Bench: Overview�
}  A framework for automatic benchmark tests

}  Dependability metrics are defined and measured by each
program. DS-Bench itself does not define them.

}  Supports multiple benchmark programs
}  Existing benchmark programs, as well as user-developed ones,

can be executed on DS-Bench

DS-Bench
Controller	

Target Machines	

Benchmark A	

Benchmark B	

Benchmark C	

9	

Deploying & executing
benchmark programs	

Returning results	Benchmark
Database	

DSN 2012, Boston, MA, USA	

DS-Bench: Benchmark Results �
}  Handling outputs from various benchmark programs

}  Output style of benchmark programs may vary
}  Usually the output is pre-formatted for human readability

}  Benchmark description is prepared for each benchmark
program
}  Describes cutting rules for interpreting the raw result so that a text

table can be converted to a list of machine readable values

}  Converted results are stored in an XML database

10	

Benchmark
description	

DSN 2012, Boston, MA, USA	

DS-Bench: Anomaly Loads�
}  Anomaly loads simulate several irregular situations that

may occur to the system
}  E.g. Whole machine failure, device failure, performance

degradation, …

}  Essential for dependability benchmark testing
}  We want to know if the system is still dependable under such

conditions	

11	 DSN 2012, Boston, MA, USA	

DS-Bench: Pre-installed Programs �

12	

Name	 Description	

bonnie++	 I/O benchmark	

lmbench	 Generic performance benchmark	

hackbench	 System benchmark; creates a lot of processes	

httperf	 Measures performance of HTTP servers	

iperf	 Measures network bandwidth	

cpustress	 Stresses CPU; just consumes CPU time	

memstress	 Stresses memory; just consumes memory

netcmd	 Injecting network anomalies; delay, packet drop, reordering	

terminator	 Kills a process	

Each program may be used as a benchmark program or anomaly generator. Some
of them may be used as both.
e.g. bonnie++ can be used as a benchmark program to measure I/O bandwidth, as
well as an anomaly generator that consumes I/O bandwidth.	

DSN 2012, Boston, MA, USA	

DS-Bench: Benchmark Scenario (1)�
}  Benchmark programs and anomaly loads are executed

concurrently in a specific timing	

13	 DSN 2012, Boston, MA, USA	

DS-Bench: Benchmark Scenario (2)�

14	

}  Each scenario may define input parameters and an output
result
}  Input parameters are adjustable from D-Case Editor
}  An output result can be obtained from D-Case Editor

}  Example:

Scenario:
•  Client machines access to a

web server cluster
•  A power failure occurs to

one server node
•  The server has an automatic

failover mechanism

Input Parameter:
•  Request

frequency
[reqs/s]

Output:
•  Maximum

observed
latency [ms]

DSN 2012, Boston, MA, USA	

D-Cloud �

D-Cloud	

15	 DSN 2012, Boston, MA, USA	

D-Cloud: Overview�
}  D-Cloud manages hardware resources needed for

conducting benchmark tests
}  Two types of computing resources are provided

}  Physical machines
}  For performance-sensitive tests

}  Virtual machines
}  Managed by OpenStack, a management software for private clouds
}  An arbitrary number of virtual machines can be created

simultaneously
}  For functional, performance-insensitive tests

16	 DSN 2012, Boston, MA, USA	

D-Cloud: Fault Injection �
}  D-Cloud also performs fault injection

}  Adding anomalies from the outside of target machines
}  Mostly requires special equipment (e.g. intelligent PDUs, IPMI,

SNMP-enabled switch), or special software (e.g. VMM)

}  FaultVM [Banzai CLOUD2010][Hanawa PRDC2010]

}  A virtual machine monitor that comes with a hardware failure
simulation feature

}  Based on QEMU, an open source full system emulator

}  Fault injection functions are exported to DS-Bench and
can be used as anomaly generators
}  i.e. These fault injectors can be put in a benchmark scenario

17	 DSN 2012, Boston, MA, USA	

D-Cloud: List of Fault Injection Methods �

18	

Name	 Target	 Description	

LinkRefuse	 Physical Machine	 Shuts down a network switch port	

SupplyRefuse	 Physical Machine	 Shuts down a power supply to a target	

IPMICtrl	 Physical Machine	 Controls a power status of a target via IPMI	

VMMemFlip	 Virtual Machine	 Injects memory flip into VM	

VMStop	 Virtual Machine	 Pauses a VM	

VMNicFault	 Virtual Machine	 Injects a various fault into VM’s virtual NIC
device	

Fault injection methods for physical machines are implemented as a program, and
can be added by users just as benchmark programs	

DSN 2012, Boston, MA, USA	

Typical Workflow with the Toolset�
1.  Determine the required

dependability metrics and
describe it in D-Case

2.  Find a suitable benchmark
scenario in DS-Bench
database

}  If not exist, create new one

3.  Adjust parameters and run
the benchmark test from
D-Case Editor

4.  Result is returned to D-
Case Editor and recorded
as an evidence for D-Case

19	

Get a
scenario	

Execute
benchmark	

Record
result as an
evidence
for D-Case	

DSN 2012, Boston, MA, USA	

Demonstration �
}  Evaluating a web server system
}  Dependability requirement

}  Keep the access latency lower than 3s even one server node fails
}  Environment

}  The server provides a single system view using SSPA, a load
balancing/high availability mechanism [Fujita HASE2011]

20	

DS-Bench/D-Cloud	

Web Clients
(Virtual Machines)	

Web Servers
(Physical Machines)	

httperf:
measures reply

latency	

Access	

Anomaly Generator
(Disabling NIC)	

Single IP Address	

DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

21	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

22	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

23	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

24	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

25	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

26	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

27	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

28	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

29	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

30	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

31	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

32	 DSN 2012, Boston, MA, USA	

Demo: Creating a New Scenario �

33	 DSN 2012, Boston, MA, USA	

Demo: Creating a D-Case Diagram �

34	 DSN 2012, Boston, MA, USA	

Demo: Creating a D-Case Diagram �

35	 DSN 2012, Boston, MA, USA	

Demo: Creating a D-Case Diagram �

36	 DSN 2012, Boston, MA, USA	

Demo: Creating a D-Case Diagram �

37	 DSN 2012, Boston, MA, USA	

Demo: Creating a D-Case Diagram �

38	 DSN 2012, Boston, MA, USA	

Demo: Selecting a Benchmark Scenario �

39	 DSN 2012, Boston, MA, USA	

Demo: Selecting a Benchmark Scenario �

40	 DSN 2012, Boston, MA, USA	

Demo: Selecting a Benchmark Scenario �

41	 DSN 2012, Boston, MA, USA	

Demo: Selecting a Benchmark Scenario �

42	 DSN 2012, Boston, MA, USA	

Demo: Selecting a Benchmark Scenario �

43	 DSN 2012, Boston, MA, USA	

Demo: Setting Benchmark Parameters �

44	 DSN 2012, Boston, MA, USA	

Demo: Setting Benchmark Parameters �

45	 DSN 2012, Boston, MA, USA	

Demo: Setting Benchmark Parameters �

46	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Execution �

47	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Execution �

48	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Execution �

49	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Execution �

50	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Execution �

51	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Execution �

52	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Execution �

53	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Execution �

54	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Result �

55	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Result �

56	 DSN 2012, Boston, MA, USA	

Demo: Benchmark Result �

57	 DSN 2012, Boston, MA, USA	

Related Work �
}  ASCE Tool [Adelard]

}  An well-used assurance case editor. Mainly for generating
certification documents

}  D-Bench [Kanoun 2004, Durães 2004]
}  A project aimed at establishing dependability benchmarking

methods for several domains
}  Proposed dependability metrics and measurement tools for

several target domains, however did not provide a total
software framework to integrate multiple benchmarks

}  Fault injection tools
}  As far as we know, no effort have been made to combine

assurance cases and benchmark results dynamically	

58	 DSN 2012, Boston, MA, USA	

Summary�
}  An automated tool for dependability benchmarking, with

dependability assurance, is needed
}  DS-Bench Toolset

}  D-Case Editor, an assurance case editor
}  DS-Bench, a framework for benchmark test
}  D-Cloud, a system for managing hardware resources for

benchmark test
}  Tight collaboration between D-Case Editor and DS-

Bench
}  Dependability requirements are described in D-Case
}  DS-Bench conducts benchmark tests to obtain a quantitative

evidence for D-Case	

59	 DSN 2012, Boston, MA, USA	

Questions?�

60	

}  D-Case Editor is available from
}  http://www.dependable-os.net/tech/D-CaseEditor/

}  DS-Bench/D-Cloud will be available from
}  http://www.dependable-os.net/tech/DSBenchDCloud/

}  We thank Hajime Ueno for designing D-Case Editor with us. We also thank Shingo
Takeda and Hideaki Koizumi for helping us with preparing the demonstration.

DSN 2012, Boston, MA, USA	

